A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 ①取數(shù)列{an}為常數(shù)列,即可推出該命題是假命題;
②根據(jù)等差數(shù)列的性質(zhì),推出2(S2n-Sn)=Sn+(S3n-S2n),即可得到Sn,S2n-Sn,S3n-S2n,…為等差數(shù)列;
③利用等比數(shù)列的特例判斷選項是否正確;
④根據(jù)數(shù)列的前n項的和減去第n-1項的和得到數(shù)列的第n項的通項公式,即可得到此等比數(shù)列的首項與公比,根據(jù)首項和公比,利用等比數(shù)列的前n項和的公式表示出前n項的和,結(jié)合等比數(shù)列前n項和公式分析可得結(jié)論是否正確.
解答 解:①取數(shù)列{an}為常數(shù)列,對任意m、n、s、t∈N*,都有am+an=as+at,故錯;
②設(shè)等差數(shù)列an的首項為a1,公差為d,
則Sn=a1+a2+…+an,S2n-Sn=an+1+an+2+…+a2n=a1+nd+a2+nd+…+an+nd=Sn+n2d,
同理:S3n-S2n=a2n+1+a2n+2+…+a3n=an+1+an+2+…+a2n+n2d=S2n-Sn+n2d,
∴2(S2n-Sn)=Sn+(S3n-S2n),
∴Sn,S2n-Sn,S3n-S2n是等差數(shù)列.此選項正確;
③設(shè)an=(-1)n,
則S2=0,S4-S2=0,S6-S4=0,
∴此數(shù)列不是等比數(shù)列,此選項錯;
④因為an=Sn-Sn-1=(Aqn+B)-(Aqn-1+B)=Aqn-Aqn-1=(Aq-1)•qn-1,
所以此數(shù)列為首項是Aq-1,公比為q的等比數(shù)列,
則Sn=$\frac{(Aq-1)(1-{q}^{n})}{1-q}$,
所以B=$\frac{Aq-1}{1-q}$,A=-$\frac{Aq-1}{1-q}$,∴A+B=0,故正確;
即有②④正確.
故選:C.
點評 此題考查學(xué)生靈活運用等差、等比數(shù)列的性質(zhì)化簡求值,是一道綜合題.屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分非必要條件 | ||
C. | 必要非充分條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1,2) | B. | (2,2,1) | C. | (1,1,1) | D. | $(1\;,\;1\;,\;\frac{1}{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 60°或120° | C. | 30° | D. | 30°或150° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com