某流程圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是( 。
A、f(x)=x2-1
B、f(x)=
1
x
C、f(x)=
ex-e-x
ex+e-x
D、f(x)=3sinx+1
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:根據(jù)程序框圖知輸出函數(shù)是奇函數(shù),且存在零點(diǎn)的函數(shù),依次判斷各選項(xiàng)函數(shù)是否滿足,可得答案.
解答: 解:由程序框圖知程序的功能是輸出滿足條件f(x)+f(-x)=0即是奇函數(shù),且存在零點(diǎn)的函數(shù),
A選項(xiàng)函數(shù)不是奇函數(shù);B選項(xiàng)函數(shù)是奇函數(shù),但不存在零點(diǎn);
C選項(xiàng)函數(shù)f(-x)=
e-x-ex
e-x+ex
=-f(x),且函數(shù)存在零點(diǎn)x=0;
D選項(xiàng)函數(shù)不是奇函數(shù).
故選:C.
點(diǎn)評:本題借助考查程序框圖,考查函數(shù)的奇偶性及零點(diǎn)的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在圓的內(nèi)接四邊形ABCD中,∠ABC=90°,∠ABD=30°,∠BDC=45°,AD=1,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1,由直線l:x+y+k=0上一點(diǎn)P作圓O的兩條切線,切點(diǎn)為A,B,若在直線l上至少存在一點(diǎn)P,使∠APB=60°,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,其長軸長是焦距的4倍,且拋物線y2=6x的焦點(diǎn)平分線段AF,則橢圓C的方程為( 。
A、
x2
4
+
y2
3
=1
B、
x2
4
+
4y2
15
=1
C、
x2
16
+
y2
15
=1
D、
x2
16
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線經(jīng)過點(diǎn)(2,2
3
),則該雙曲線的離心率為( 。
A、
3
B、2
C、
5
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=-i(i+1)(i為虛數(shù)單位)的共軛復(fù)數(shù)是(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x||x|>2},N={x|x>1},則M∩N=( 。
A、{x|x<-2或x>2}
B、{x|x>2}
C、{x|x>1}
D、{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,焦點(diǎn)F在x軸上,拋物線上的點(diǎn)A到F的距離為2,且A的橫坐標(biāo)為l.直線l:y=kx+b與拋物線交于B,C兩點(diǎn).
(1)求拋物線的方程;
(2)當(dāng)直線OB,OC的傾斜角之和為45°時(shí),證明直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
2x-3
x+1
(-2≤x≤2且x≠-1)的值域.

查看答案和解析>>

同步練習(xí)冊答案