A. | $-\frac{1}{5}$ | B. | -1 | C. | $\frac{11}{5}$ | D. | 11 |
分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
設(shè)z=$\frac{3x-4y}{5}$,得y=$\frac{3}{4}$x-$\frac{5}{4}$z,
平移直線y=$\frac{3}{4}$x-$\frac{5}{4}$z,
由圖象可知當(dāng)直線y=$\frac{3}{4}$x-$\frac{5}{4}$z,
經(jīng)過C時(shí),直線y=$\frac{3}{2}$x$-\frac{z}{2}$的截距最小,
此時(shí)z最大.
由$\left\{\begin{array}{l}{y=1}\\{x+y-6=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$,即C(5,1)
將C代入目標(biāo)函數(shù)z=$\frac{3x-4y}{5}$得z=$\frac{3×5-4}{5}$=$\frac{11}{5}$.
即z的最大值為$\frac{11}{5}$.
故選:C.
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標(biāo)函數(shù)的最大值和最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | -3 | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -3 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com