A. | B. | C. | D. |
分析 函數(shù)y=f(x)的圖象為折線ABC,其為偶函數(shù),所研究x≥0時g(x)的圖象即可,首先根據(jù)圖象求出x≥0時f(x)的圖象及其值域,再根據(jù)分段函數(shù)的性質(zhì)進(jìn)行求解,可以求出g(x)的解析式再進(jìn)行判斷.
解答 解:如圖:函數(shù)y=f(x)的圖象為折線ABC,函數(shù)f(x)為偶函數(shù),
我們可以研究x≥0的情況即可,
若x≥0,可得B(0,1),C(1,-1),這直線BC的方程為:lBC:y=-2x+1,x∈[0,1],其中-1≤f(x)≤1;
若x<0,可得lAB:y=2x+1,∴f(x)=$\left\{\begin{array}{l}{-2x+1,0≤x≤1}\\{2x+1,-1≤x<0}\end{array}\right.$,
我們討論x≥0的情況:如果0≤x≤$\frac{1}{2}$,解得0≤f(x)≤1,此時g(x)=f[f(x)]=-2(-2x+1)+1=4x-1;
若$\frac{1}{2}$<x≤1,解得-1≤f(x)<0,此時g(x)=f[f(x)]=2(-2x+1)+1=-4x+3;
∴x∈[0,1]時,g(x)=$\left\{\begin{array}{l}{4x-1,0≤x≤\frac{1}{2}}\\{-4x+3,\frac{1}{2}<x≤1}\end{array}\right.$;
故選:A
點評 本題主要考查分段函數(shù)的定義域和值域以及復(fù)合函數(shù)的解析式求法,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{5}$ | B. | -1 | C. | $\frac{11}{5}$ | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 2i | D. | -2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{9}$ | B. | $\frac{4}{9}$ | C. | $\frac{5}{9}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S6 | B. | S7 | C. | S8 | D. | S9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | a>b>c | C. | c>b>a | D. | b>c>a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com