1.若“1≤x≤3”是“0≤x≤m”的充分不必要條件,則實數(shù)m的取值范圍是[3,+∞).

分析 “1≤x≤3”是“0≤x≤m”的充分不必要條件,可得m≥3,即可得出.

解答 解:“1≤x≤3”是“0≤x≤m”的充分不必要條件,
則m≥3,
則實數(shù)m的取值范圍是[3,+∞).
故答案為:[3,+∞).

點評 本題考查了簡易邏輯的判定方法、不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知二次函數(shù)f(x)=x2+bx+c,方程f(x)-x=0的兩個根x1,x2滿足0<x1<x2<1.
(Ⅰ)當x∈(0,x1)時,證明:x<f(x)<x1
(Ⅱ)設函數(shù)f(x)的圖象關于直線x=x0對稱,證明:x0<$\frac{x_1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知直線l的傾斜角為30°,(結(jié)果化成一般式)
(1)若直線l過點P(3,-4),求直線l的方程.
(2)若直線l在x軸上截距為-2,求直線l的方程.
(3)若直線l在y軸上截距為3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列關系中正確的個數(shù)是( 。
①$\sqrt{2}$∈R;②0∈N*;③{-2}⊆Z,④∅={0}.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(2cos2x,1),$\overrightarrow$=(2cos(2x-$\frac{π}{3}$),-1).令f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的最小正周期及單調(diào)增區(qū)間.
(2)若f($\frac{1}{4}$θ)=$\frac{2}{3}$,且θ∈($\frac{π}{6}$,$\frac{5π}{6}$),求cosθ的值.
(2)當x∈[$\frac{π}{4}$,$\frac{π}{2}$]時,求f(x)的最小值以及取得最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求適合下列條件的圓錐曲線的標準方程:
(1)焦點在直線x-2y+4=0上,且開口向上的拋物線;
(2)與雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1有公共的漸近線,且過點(3$\sqrt{2}$,0)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.給出下列命題:
①已知集合M滿足∅?M⊆{1,2,3,4},且M中至多有一個偶數(shù),這樣的集合M有12個;
②已知函數(shù)f(x)滿足條件:$f(x)+2f(\frac{1}{x})={log_2}x$,則f(2)等于-1;
③設A、B為非空集合,定義集合A+B={x|x∈A或x∈B且x∉A∩B},若$P=\{x|y=\sqrt{{x^2}-4x}\}$,Q={y|y=3x+1},則P+Q={x|x≤0或1<x≤4};
④如果函數(shù)y=f(x)的圖象關于y軸對稱,且f(x)=(x-2015)2+1(x≥0),則當x<0時,f(x)=(x+2015)2+1;
其中正確的命題的序號是②④(把所有正確的命題序號寫在答題卷上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設n∈N,求證:
(1)$\sqrt{n+1}$-1<$\frac{1}{2}$+$\frac{1}{2\sqrt{2}}$+…+$\frac{1}{2\sqrt{n}}$<$\sqrt{n}$;
(2)$\frac{1}{2n+1}$<$\frac{1}{2}$×$\frac{3}{4}$×…×$\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若a?α,b?β,則a與b的位置關系是平行、相交、異面.

查看答案和解析>>

同步練習冊答案