4.已知函數(shù)f(x)=(x2+ax+b)(ex-e),a,b∈R,當x>0時,f(x)≥0,則實數(shù)a的取值范圍為( 。
A.-2≤a≤0B.-1≤a≤0C.a≥-1D.0≤a≤1

分析 設g(x)=x2+ax+b,h(x)=ex-e,根據(jù)當x>0時f(x)≥0,判斷兩個函數(shù)的符號關系得到g(x)必需過點(1,0)點,建立a,b的關系,根據(jù)圖象和一元二次函數(shù)根的關系,列出不等式求解即可.

解答 解:設g(x)=x2+ax+b,h(x)=ex-e,
則h(x)在(0,+∞)上為增函數(shù),且h(1)=0,
若當x>0時f(x)≥0,則滿足當x>1時,g(x)≥0,
當0<x<1時,g(x)≤0,
即g(x)必需過點(1,0)點,
則g(1)=1+a+b=0,即b=-1-a,
此時函數(shù)g(x)與h(x)滿足如圖所示:
此時g(x)=x2+ax-1-a=(x-1)[x+(a+1)],
則滿足函數(shù)g(x)的另外一個零點-a-1≤0,
即a≥-1,
故選:C.

點評 本題主要考查不等式恒成立問題,構造函數(shù)轉化為兩個函數(shù)的符號相反,利用數(shù)形結合是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}-2x+1$,
(1)求函數(shù)f(x)的極值;
(2)若對?x∈[-2,3],都有s≥f(x)恒成立,求出s的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知$\frac{si{n}^{2}θ+4}{cosθ+1}$=2,則(cosθ+1)(sinθ+1)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={x|2<x<4},B={x|x<3或x>5},則A∪∁RB=( 。
A.{x|2<x≤5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x≥5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)中既是奇函數(shù),又在區(qū)間[-1,1]上單調遞增的是( 。
A.f(x)=x${\;}^{-\frac{1}{2}}$B.f(x)=sin(2x+$\frac{π}{2}$)C.f(x)=3-x-3xD.f(x)=x+tanx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調遞增的函數(shù)是( 。
A.y=log2(x+3)B.y=2|x|+1C.y=-x2-1D.y=3-|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在平行四邊形ABCD中,E,F(xiàn)分別是CD和BC的中點,若$\overrightarrow{AE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R),則2x+y=2;若$\overrightarrow{AC}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{AF}$(λ,μ∈R),則3λ+3μ=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.過點(-3,-1)且與直線x-2y+3=0平行的直線方程是( 。
A.2x+y+7=0B.2x-y+5=0C.x-2y+1=0D.x-2y+5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知x與y之間的一組數(shù)據(jù):
x34557
y24568
則y與x的線性回歸方程為y=bx+a必過(  )
A.(5,5)B.(4.5,5)C.(4.8,5)D.(5,6)

查看答案和解析>>

同步練習冊答案