3.已知雙曲線的兩焦點(diǎn)為F1,F(xiàn)2,焦距為2$\sqrt{5}$,點(diǎn)P在雙曲線上,且滿足∠F1PF2=90°,又|PF1|-|PF2|=4,則△F1PF2的面積為1.

分析 設(shè)|PF1|=x,|PF2|=y,根據(jù)根據(jù)雙曲線性質(zhì)可知x-y的值,再根據(jù)∠F1PF2=90°,求得x2+y2的值,進(jìn)而根據(jù)2xy=x2+y2-(x-y)2求得xy,進(jìn)而可求得△F1PF2的面積.

解答 解:設(shè)|PF1|=x,|PF2|=y,(x>y)
根據(jù)題意可知x-y=4,
∵∠F1PF2=90°,
∴x2+y2=20
∴2xy=x2+y2-(x-y)2=4
∴xy=2
∴△F1PF2的面積為$\frac{1}{2}$xy=1
故答案為:1.

點(diǎn)評(píng) 本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).要靈活運(yùn)用雙曲線的定義及焦距、實(shí)軸、虛軸等之間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若直線y=m與y=3x-x3的圖象有三個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.(-2,2)B.[-2,2]C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a=sin$\frac{3π}{5}$,b=cos$\frac{2π}{5}$,c=tan$\frac{2π}{5}$,則( 。
A.b<a<cB.b<c<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從雙曲線$\frac{x^2}{4}-\frac{y^2}{5}=1$的左焦點(diǎn)F引圓x2+y2=4的切線l,切點(diǎn)為T,且l交雙曲線的右支于點(diǎn)P,若點(diǎn)M是線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|OM|-|TM|的值為$\sqrt{5}-2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題中,正確的是( 。
A.存在x0>0,使得x0<sinx0
B.“l(fā)na>lnb”是“10a>10b”的充要條件
C.若sinα≠$\frac{1}{2}$,則α≠$\frac{π}{6}$
D.若函數(shù)f(x)=x3+3ax2+bx+a2在x=-1有極值0,則a=2,b=9或a=1,b=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)y=(m2-m-1)${x}^{{m}^{2}-3m-3}$是冪函數(shù),且在區(qū)間(0,+∞)上為增函數(shù),則m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為$\sqrt{2}$,且過點(diǎn)(4,-$\sqrt{10}$),點(diǎn)M(3,m)在雙曲線上.
(1)求雙曲線方程;
(2)求證:MF1⊥MF2;
(3)從雙曲線的左焦點(diǎn)F1引以原點(diǎn)為圓心,實(shí)半軸長(zhǎng)為半徑的圓的切線,求切線與雙曲線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義域?yàn)镽的函數(shù)f(x)以4為周期,且函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈(-1,1]}\\{2-|x-2|,x∈(1,3]}\end{array}\right.$,若滿足函數(shù)g(x)=f(x)-mx(m>0)恰有5個(gè)零點(diǎn),則m的取值范圍為( 。
A.($\frac{\sqrt{15}}{15}$,$\frac{1}{3}$)B.[$\frac{1}{5}$,$\frac{\sqrt{15}}{15}$)C.($\frac{1}{5}$,$\frac{\sqrt{15}}{15}$]D.($\frac{1}{7}$,$\frac{1}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=log9(9x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)y=f(x)的圖象與直線y=$\frac{1}{2}$x+b沒有交點(diǎn),求b的取值范圍;
(3)設(shè)h(x)=f(x)-log9(a•3x-$\frac{4}{3}$a),若函數(shù)h(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案