13.若直線y=m與y=3x-x3的圖象有三個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.(-2,2)B.[-2,2]C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)

分析 利用導(dǎo)數(shù),求出y=3x-x3的極值,由此結(jié)合已知條件能求出實(shí)數(shù)m的取值范圍.

解答 解:∵y=3x-x3,
∴y′=3-3x2,
令y′=0,得x=±1,
∵x∈(-∞,-1)時(shí),y′<0;
x∈(-1,1)時(shí),y′>0;x∈(1,+∞)時(shí),y′<0.
∴當(dāng)x=1時(shí),y取極大值2,
當(dāng)x=-1時(shí),y取極小值-2,
∵直線y=m與y=3x-x2的圖象有三個(gè)不同交點(diǎn)
∴m的取值范圍為-2<m<2.
故選:A.

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.根據(jù)下列條件寫出拋物線的標(biāo)準(zhǔn)方程:
(1)經(jīng)過點(diǎn)(-3,-1);
(2)焦點(diǎn)為直線3x-4y-12=0與坐標(biāo)軸的交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,例如解析式為y=2x2+1,值域?yàn)閧9}的“孿生函數(shù)”就有三個(gè),那么解析式為y=log2(x2-1),值域?yàn)閧1,5}的“孿生函數(shù)”共有(  )
A.6個(gè)B.7個(gè)C.8個(gè)D.9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U={x|x≤5,x∈N},A={1,2,3},B={3,4},則CU(A∪B)=( 。
A.{1,2,3,4}B.{0,5}C.{5}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列$\{a_n^{\;}\}$滿足a1=2,${a_{n+1}}=2{a_n}+2\;\;(n∈{N^*})$.
(1)求證:數(shù)列$\{a_n^{\;}+2\}$是等比數(shù)列,并求出通項(xiàng)公式an;
(2)若數(shù)列$\{b_n^{\;}\}滿足b_n^{\;}={log_2}({a_n}+2)$,設(shè)Tn是數(shù)列$\{\frac{b_n}{{{a_n}+2}}\}$的前n項(xiàng)和,求證:${T_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且$sinC=\frac{56}{65},sinB=\frac{12}{13},b=3$,則c=$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等比數(shù)列{an}中,a1+a2+a3=1,a4+a5+a6=8,則該等比數(shù)列的公比為( 。
A.-2B.2C.-2或1D.2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.根據(jù)條件求下列各函數(shù)的解析式:
(1)已知f(x)是二次函數(shù),若f(0)=0,f(x+1)=f(x)+x+1,求f(x).
(2)已知$f(\sqrt{x}+1)=x+2\sqrt{x}$,求f(x)
(3)若f(x)滿足$f(x)+2f(\frac{1}{x})=ax$,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線的兩焦點(diǎn)為F1,F(xiàn)2,焦距為2$\sqrt{5}$,點(diǎn)P在雙曲線上,且滿足∠F1PF2=90°,又|PF1|-|PF2|=4,則△F1PF2的面積為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案