已知
2n2-m≤0
n>m≥0
,求n-2m的最大值.
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,令t=n-2m,聯(lián)立
n=2m+t
2n2=m
,消去n后由判別式等于0求得答案.
解答: 解:由約束條件
2n2-m≤0
n>m≥0
作出可行域如圖,

令t=n-2m,則n=2m+t,
聯(lián)立
n=2m+t
2n2=m
,消去m得:4n2-n+t=0.
由△=(-1)2-16t=0,得t=
1
16

∴n-2m的最大值為
1
16

故答案為:
1
16
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)與y=|x|表示同一個函數(shù)的是( 。
A、y=(
x
2
B、y=(
5x
5
C、y=(
7
6x6
7
D、y=
x2
|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)+
1
2
+m的圖象過點(
12
,0)
(1)求實數(shù)m的值及f(x)的周期及單調(diào)遞增區(qū)間;
(2)若x∈[0,
π
2
],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m=-1”是“直線mx+(2m-1)y+1=0,和直線3x+my+9=0垂直”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合S={x|x≥2},集合T={x|x≤5}為整數(shù)集,則S∩T=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的函數(shù),f(0)=2,對任意x∈R,f(x)+f′(x)>1,則不等式exf(x)>ex+1的解集為(  )
A、(0,+∞)
B、(-∞,0)
C、(-∞,-1)∪(1,+∞)
D、(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD為直角梯形,∠DAB=∠ABC=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
1
2
,求平面SAB與SCD的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個球隊20人,其中4人是教練,現(xiàn)將全體人員平均分成兩個訓(xùn)練小組,每組有教練2人,問有
 
種分法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan
π
8
1-tan2
π
8
=
 

查看答案和解析>>

同步練習(xí)冊答案