11.已知在數(shù)列{an}中,a1=1,an+1-an =$\frac{1}{(2n)^{2}-1}$,求數(shù)列{an}的通項(xiàng)公式.

分析 通過(guò)裂項(xiàng)可知an+1-an =$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),進(jìn)而并項(xiàng)相加可知an-a1 =$\frac{n-1}{2n-1}$,進(jìn)而計(jì)算可得結(jié)論.

解答 解:∵an+1-an =$\frac{1}{(2n)^{2}-1}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴an-an-1 =$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$),
an-1-an-2 =$\frac{1}{2}$($\frac{1}{2n-5}$-$\frac{1}{2n-3}$),

a2-a1 =$\frac{1}{2}$(1-$\frac{1}{3}$),
累加得:an-a1 =$\frac{1}{2}$(1-$\frac{1}{3}$+…+$\frac{1}{2n-5}$-$\frac{1}{2n-3}$+$\frac{1}{2n-3}$-$\frac{1}{2n-1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n-1}$)
=$\frac{n-1}{2n-1}$,
∴an=a1+$\frac{n-1}{2n-1}$=1+$\frac{n-1}{2n-1}$=$\frac{3n-2}{2n-1}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求下列函數(shù)的導(dǎo)數(shù).
(1)y=$\root{4}{{x}^{3}}$
(2)y=(x2+x-1)(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知集合A={x|1<ax<2},B={x||x|<1},且A?B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x+1)=$\frac{1}{f(x)}$,且f(x)為偶函數(shù),當(dāng)x∈[3,4]時(shí),f(x)=log3x,試求當(dāng)x∈[-1,1]時(shí),f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知直線l1:4x+y+3=0,l2:3x-5y-5=0,直線l與l1、l2交于A、B兩點(diǎn),且AB中點(diǎn)為P(-1,2),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.過(guò)點(diǎn)P(1,2)的直線交x,y軸的正半軸于A,B兩點(diǎn),當(dāng)|AB|最小時(shí),直線l的方程為y-2=$\root{3}{2}$(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.?dāng)?shù)列{an},{bn}滿足an+1=$\frac{{{a}_{n}}^{2}}{{a}_{n}+_{n}}$,bn+1=$\frac{{_{n}}^{2}}{{a}_{n}+_{n}}$,a1=3,b1=1.
(1)令Cn=an-bn,求數(shù)列{Cn}的通項(xiàng)公式;
(2)記數(shù)列{bn}的前n項(xiàng)和為Sn,求證:Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若f(x-1)=x2-1,則f(x)=f(x)=x2+2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.f($\sqrt{x}$+1)=x,求f(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案