18.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,己知a=bcosC+csinB,求B.

分析 已知等式利用正弦定理化簡,再利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式變形,求出tanB的值,由B為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);

解答 解:由已知a=bcosC+csinB及正弦定理得:sinA=sinBcosC+sinBsinC①,
∵sinA=sin(B+C)=sinBcosC+cosBsinC②,
∴sinB=cosB,即tanB=1,
∵B為三角形的內(nèi)角,
∴B=$\frac{π}{4}$;
故答案為:$\frac{π}{4}$.

點(diǎn)評 此題考查了正弦定理,兩角和與差的正弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知sinα+cosα=-$\frac{\sqrt{7}}{2}$,sinα-cosα=$\frac{1}{2}$,計(jì)算下列各式的值:
(1)sinαcosα;
(2)sin4α-cos4α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列函數(shù)的定義域和值域.
y=($\frac{1}{2}$)${\;}^{\frac{x+2}{x+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,$\overrightarrow{OC}$=2$\overrightarrow{OA}$,$\overrightarrow{OD}$=3$\overrightarrow{OB}$,記$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,線段AD交BC于點(diǎn)E,試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OE}$,則$\overrightarrow{OE}$=$\frac{4}{5}\overrightarrow{a}$$+\frac{3}{5}\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(x+$\frac{3}{x}$)(x-$\frac{2}{x}$)5展開式中的常數(shù)項(xiàng)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,內(nèi)角A、B、C對應(yīng)的邊長分別為a、b、c.已知acosB-$\frac{1}{2}$b=$\frac{{a}^{2}}{c}$-$\frac{bsinB}{sinC}$.
(1)求角A;
(2)若a=$\sqrt{3}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.求和:S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin$\frac{2015π}{3}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=log${\;}_{\frac{1}{3}}$(x2-2x+4)的值域是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若x>-3,則函數(shù)$y=x+\frac{1}{x+3}$的最小值是-1.

查看答案和解析>>

同步練習(xí)冊答案