8.已知sinα+cosα=-$\frac{\sqrt{7}}{2}$,sinα-cosα=$\frac{1}{2}$,計(jì)算下列各式的值:
(1)sinαcosα;
(2)sin4α-cos4α.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:(1)∵sinα+cosα=-$\frac{\sqrt{7}}{2}$,平方可得1+2sinα•cosα=$\frac{7}{4}$,
∴sinαcosα=$\frac{3}{8}$.
(2)∵sinα+cosα=-$\frac{\sqrt{7}}{2}$,sinα-cosα=$\frac{1}{2}$,∴sin2α-cos2α=-$\frac{\sqrt{7}}{4}$,
∴sin4α-cos4α=(sin2α+cos2α)•(sin2α-cos2α)=sin2α-cos2α=-$\frac{\sqrt{7}}{4}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若復(fù)數(shù)z=x+yi(x,y∈R)滿足|z|≤1,則|z-2i|的取值范圍是[1,3],|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知$\frac{sinθ-cosθ}{sinθ+cosθ}$=$\frac{1}{2}$,求:
(1)3cos2θ-sin2θ+1;
(2)$\frac{1-2co{s}^{2}\frac{θ}{2}+2sinθ}{2sin(θ+\frac{3π}{4})}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知數(shù)列{an}滿足:an=$\frac{1}{{n}^{2}+n}$,且Sn=$\frac{10}{11}$,則n的值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知sinx=-0.427,求0°~360°范圍內(nèi)的角x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知sin($\frac{π}{4}$+x)=$\frac{12}{13}$,0<x<$\frac{π}{4}$,求$\frac{cos2x}{cos(\frac{π}{4}-x)}$的值為$\frac{10}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.sinα+cosα=$\frac{\sqrt{5}}{2}$,α∈(0,π),求
(1)cos2α
(2)tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求過(guò)兩條直線3x+y-8=0與2x-y+3=0的交點(diǎn),且分別滿足下列條件的直線方程:
(1)與直線2x-y+6=0在y軸上的截距相等;
(2)傾斜角α滿足關(guān)系式sinα=cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,己知a=bcosC+csinB,求B.

查看答案和解析>>

同步練習(xí)冊(cè)答案