【題目】已知拋物線的焦點(diǎn)為軸上的點(diǎn).

(1)當(dāng)時,過點(diǎn)作直線相切,求切線的方程;

(2)存在過點(diǎn)且傾斜角互補(bǔ)的兩條直線,若分別交于,,四點(diǎn),且的面積相等,求實(shí)數(shù)的取值范圍.

【答案】(1) 切線的方程為;(2) 的取值范圍為.

【解析】分析:(1)設(shè)切點(diǎn)為,再求切線的斜率和切點(diǎn),最后寫出直線的點(diǎn)斜式方程化簡即得解. (2)先求出的面積為,的面積為.再令它們想到得到找到a的范圍.

詳解:(1)設(shè)切點(diǎn)為,則

點(diǎn)處的切線方程為.

過點(diǎn),∴,解得.

當(dāng)時,切線的方程為.

(2)設(shè)直線的方程為,代入

, ①

,得, ②

由題意得,直線的方程為

同理可得,即, ③

②×③得,∴. ④

設(shè),,則.

.點(diǎn)的距離為,

的面積為.

同理的面積為.

由已知得,

化簡得, ⑤

欲使⑤有解:則,∴.

,得,∴.

綜上,的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解學(xué)生使用手機(jī)的情況,分別在高一和高二兩個年級各隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機(jī)時間的頻數(shù)分布表和頻率分布直方圖,將使用手機(jī)時間不低于80分鐘的學(xué)生稱為“手機(jī)迷”.

學(xué)生日均使用手機(jī)時間的頻數(shù)分布表

時間分組

頻數(shù)

[0,20

12

[20,40

20

[40,60

24

[60,80

18

[80,100

22

[100,120]

4

1將頻率視為概率,估計哪個年級的學(xué)生是“手機(jī)迷”的概率大?請說明理由.

2在高的抽查中,已知隨機(jī)抽到的女生共有55名,其中10名為“手機(jī)迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?

非手機(jī)迷

手機(jī)迷

合計

合計

附:隨機(jī)變量其中為樣本總量

參考數(shù)據(jù)

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的不等式ax23x+4b的解集為[ab],則ba________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的公差為,前項(xiàng)和為,記,則數(shù)列的前項(xiàng)和是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐的四個側(cè)面的面積中最大的是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)用籬笆圍一個面積為的矩形菜園,當(dāng)這個矩形的邊長為多少時,所用籬笆最短?最短籬笆的長度是多少?

2)用一段長為的籬笆圍成一個矩形菜園,當(dāng)這個矩形的邊長為多少時,菜園的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是滿足下列條件的集合:①,;②若,則;③若,則

1)判斷是否正確,說明理由;

2)證明:的充分條件;

3)證明:若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線的兩條互相垂直的弦(點(diǎn)在第二象限),且交于點(diǎn),點(diǎn)軸上一點(diǎn),,其中為銳角

(1)設(shè)線段的長為,將表示為關(guān)于的函數(shù)

(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時的大小

查看答案和解析>>

同步練習(xí)冊答案