12.已知函數(shù)y=f(x)=x2+1,則在x=2,△x=0.1時,△y的值為(  )
A.0.40B.0.41C.0.43D.0.44

分析 根據(jù)△y=f(x+△x)-f(x),代入數(shù)據(jù)計算即可.

解答 解:∵f(x)=x2+1,在x=2,△x=0.1,
∴△y=f(x+△x)-f(x)=f(2+0.1)-f(2)=(2.1)2+1-(22+1)=0.41.
故選:B.

點評 本題主要考查了函數(shù)的變化率,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點為A(-1,0),右焦點為F2($\sqrt{3}$,0),則雙曲線的漸近線方程為(  )
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{2\sqrt{2}}{3}$,橢圓C的右焦點到直線x=$\frac{a}{e}$的距離為$\frac{\sqrt{2}}{4}$,橢圓C的下頂點為D.
(1)求橢圓C的標準方程;
(2)若過D點作兩條相互垂直的直線分別與橢圓C相交于點P,M.求證:直線PM經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=lg(1+x)-lg(1+ax)是奇函數(shù),則實數(shù)a的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知e=2.71828…,設(shè)函數(shù)f(x)=$\frac{1}{2}$x2-bx+alnx存在極大值點x0,且對于b的任意可能取值,恒有極大值f(x0)<0,則下列結(jié)論中正確的是( 。
A.存在x0=$\sqrt{a}$,使得f(x0)<-$\frac{1}{e}$B.存在x0=$\sqrt{a}$,使得f(x0)>-e
C.a的最大值為e3D.0<a<e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若f(2)=3,f′(2)=-3,則$\underset{lim}{x→2}$$\frac{3x-2f(x)}{x-2}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在長方體ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=AA1=1,點P為對角線AC1上的動點,點Q為底面ABCD上的動點(點P,Q可以重合),則B1P+PQ的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前n項和為Sn,S7=0,a3-2a2=12.
(1)求數(shù)列{an}的通項公式;
(2)求Sn-15n+50的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn,對任意的n∈N*,點(n,Sn)在二次函數(shù)f(x)=x2的圖象上.
(Ⅰ)求通項公式an;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}}{{2}^{n}}$,且n∈N*,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案