若曲線(xiàn)y=1nx的一條切線(xiàn)與直線(xiàn)y=-x垂直,則該切線(xiàn)方程為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用切線(xiàn)與直線(xiàn)y=-x垂直,得到切線(xiàn)的斜率,也就是曲線(xiàn)在點(diǎn)M處的導(dǎo)數(shù),通過(guò)計(jì)算,得出點(diǎn)M的坐標(biāo),再利用點(diǎn)斜式求出切線(xiàn)方程即可.
解答: 解:設(shè)點(diǎn)M(x0,y0
∵切線(xiàn)與直線(xiàn)y=-x垂直
∴切線(xiàn)的斜率為1
∴曲線(xiàn)在點(diǎn)M處的導(dǎo)數(shù)y′=
1
x0
=1,即x0=1.
當(dāng)x0=1時(shí),y0=0,利用點(diǎn)斜式得到切線(xiàn)方程:y=x-1;
切線(xiàn)的方程為:x-y-1=0
故答案為:x-y-1=0.
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的幾何意義,以及兩條直線(xiàn)垂直,其斜率的關(guān)系,同時(shí)考查了運(yùn)算求解的能力,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c是互不相等的三實(shí)數(shù),若A(a,a3),B(b,b3),C(c,c3)在同一條直線(xiàn)上,求證:a+b+c=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+sinβ=
2
3
,求cosα+cosβ取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:log4(1+
2
+
3
)+log4(1+
2
-
3
)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿(mǎn)足約束條件
2x+3y+6≥0
x-3y+3≥0
x≤1
y≥-2
;
,則目標(biāo)函數(shù)z=2x+y的最大值為( 。
A、-6
B、-
10
3
C、
10
3
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象與x軸交于點(diǎn)(-1,0)和(2,0),則該二次函數(shù)的解析式可設(shè)為y=a
 
(a≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A=[-2,2],B=[-1,1],設(shè)M={(x,y)|x∈A,y∈B},在集合M內(nèi)隨機(jī)取出一個(gè)元素(x,y).
(1)求以(x,y)為坐標(biāo)的點(diǎn)落在圓x2+y2=1內(nèi)的概率;
(2)求以(x,y)為坐標(biāo)的點(diǎn)到直線(xiàn)x+y=0的距離不大于
2
2
的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C所對(duì)邊,若sinA=2sinBsinC,則此三角形一定是( 。
A、等腰直角三角形
B、等腰或直角三角形
C、等腰三角形
D、直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,Sn是它的前n項(xiàng)和,若S16>0,且S17<0,則當(dāng)Sn最大時(shí)n的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案