分析 (Ⅰ)化簡已知等式可得a2+c2-b2=$\sqrt{3}$ac,由余弦定理解得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{\sqrt{3}}{2}$,結(jié)合B的范圍,即可求B的值.
(Ⅱ)由同角三角函數(shù)基本關(guān)系式可求sin∠ADC,利用兩角差的正弦函數(shù)公式可求sin∠BAD的值,由正弦定理,即可解得BD,從而可求a的值.
解答 (本題滿分為12分)
解:(Ⅰ)在△ABC中,因為b2-(a-c)2=(2-$\sqrt{3}$)ac,
所以a2+c2-b2=$\sqrt{3}$ac,
由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{\sqrt{3}ac}{2ac}$=$\frac{\sqrt{3}}{2}$,
又因為B為△ABC的內(nèi)角,所以B=$\frac{π}{6}$.…(5分)
(Ⅱ)∵cos∠ADC=-$\frac{1}{4}$,
∴sin∠ADC=$\frac{\sqrt{15}}{4}$.
∴sin∠BAD=sin(∠ADC-$\frac{π}{6}$)=$\frac{3\sqrt{5}+1}{8}$.…(8分)
△ABD中,由正弦定理,得$\frac{AD}{sinB}=\frac{BD}{sin∠BAD}$,即$\frac{3}{\frac{1}{2}}=\frac{BD}{\frac{3\sqrt{5}+1}{8}}$,
解得BD=$\frac{9\sqrt{5}+3}{4}$,
故a=$\frac{9\sqrt{5}+3}{2}$.…(12分)
點評 本題主要考查了正弦定理,余弦定理,三角函數(shù)恒等變換在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,-1] | B. | [-2,1] | C. | [-1,2] | D. | $[\frac{11}{4},4]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1} | B. | {1} | C. | {-1,1} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 30° | C. | 135° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組別 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
X | 0.52 | 0.36 | 0.58 | 0.73 | 0.41 | 0.6 | 0.05 | 0.32 | 0.38 | 0.73 |
Y | 0.76 | 0.39 | 0.37 | 0.01 | 0.04 | 0.28 | 0.03 | 0.15 | 0.14 | 0.86 |
組別 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
X | 0.67 | 0.47 | 0.58 | 0.21 | 0.54 | 0.64 | 0.36 | 0.35 | 0.95 | 0.14 |
Y | 0.41 | 0.54 | 0.51 | 0.37 | 0.31 | 0.23 | 0.56 | 0.89 | 0.17 | 0.03 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com