16.在△ABC中,角A,B,C的對邊分別為a,b,c,滿足b2-(a-c)2=(2-$\sqrt{3}$)ac
(Ⅰ)求角B的大。
(Ⅱ)若BC邊上的中線AD的長為3,cos∠ADC=-$\frac{1}{4}$,求a的值.

分析 (Ⅰ)化簡已知等式可得a2+c2-b2=$\sqrt{3}$ac,由余弦定理解得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{\sqrt{3}}{2}$,結(jié)合B的范圍,即可求B的值.
(Ⅱ)由同角三角函數(shù)基本關(guān)系式可求sin∠ADC,利用兩角差的正弦函數(shù)公式可求sin∠BAD的值,由正弦定理,即可解得BD,從而可求a的值.

解答 (本題滿分為12分)
解:(Ⅰ)在△ABC中,因為b2-(a-c)2=(2-$\sqrt{3}$)ac,
所以a2+c2-b2=$\sqrt{3}$ac,
由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{\sqrt{3}ac}{2ac}$=$\frac{\sqrt{3}}{2}$,
又因為B為△ABC的內(nèi)角,所以B=$\frac{π}{6}$.…(5分)
(Ⅱ)∵cos∠ADC=-$\frac{1}{4}$,
∴sin∠ADC=$\frac{\sqrt{15}}{4}$.
∴sin∠BAD=sin(∠ADC-$\frac{π}{6}$)=$\frac{3\sqrt{5}+1}{8}$.…(8分)
△ABD中,由正弦定理,得$\frac{AD}{sinB}=\frac{BD}{sin∠BAD}$,即$\frac{3}{\frac{1}{2}}=\frac{BD}{\frac{3\sqrt{5}+1}{8}}$,
解得BD=$\frac{9\sqrt{5}+3}{4}$,
故a=$\frac{9\sqrt{5}+3}{2}$.…(12分)

點評 本題主要考查了正弦定理,余弦定理,三角函數(shù)恒等變換在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點P(x,y)在不等式組$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,表示的平面區(qū)域上運動,則$z=\frac{2x+y-12}{x-4}$取值范圍是( 。
A.[-2,-1]B.[-2,1]C.[-1,2]D.$[\frac{11}{4},4]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2,g(x)=$\frac{2}{x}$.
(1)若F(x)=f(x)+g(x),解不等式F(x)-F(x-1)>2x-1;
(2)當(dāng)x∈[-1,+∞)時,f(x)+g(x)(-ax2+x)≥a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某省去年高三200000名考生英語聽力考試服從正態(tài)分布N(17,9),現(xiàn)從某校高三年級隨機抽取50名考生的成績,發(fā)現(xiàn)全部介于[6,30]之間,將成績按如圖方式分成6組:第1組[6,10),第2組[10,14),…,第6組[26,30),如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)估算該校50名考生的眾數(shù)和中位數(shù);
(Ⅱ)求這50名考生成績在[22,30]內(nèi)的人數(shù);
(Ⅲ)從這50名考生成績在[22,30]內(nèi)的人中任意抽取2人,該2人成績排名(從高到低)在全省前260名的人數(shù)記為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={-1,0,1},集合B={x|1≤2x≤4},則A∩B=( 。
A.{-1,0,1}B.{1}C.{-1,1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.執(zhí)行如圖的程序框圖,若輸入k=63,則輸出的n=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.向量$\overrightarrow a=(3,-4),|\overrightarrow b|=2$,若$\overrightarrow a•\overrightarrow b=-5$,則向量$\overrightarrow a,\overrightarrow b$的夾角為( 。
A.60°B.30°C.135°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)$z=\frac{i}{i+1}$,那么復(fù)數(shù)z對應(yīng)的點位于復(fù)平面內(nèi)的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)AB=6,在線段AB上任取兩點C、D(端點A、B除外),將線段AB分成三條線段AC、CD、DB.
(1)若分成的三條線段的長度均為正整數(shù),求這三條線段可以構(gòu)成三角形(稱為事件A)的概率;
(2)若分成的三條線段的長度均為正實數(shù),求這三條線段可以構(gòu)成三角形(稱為事件B)的概率;
(3)根據(jù)以下用計算機所產(chǎn)生的20組隨機數(shù),試用隨機數(shù)模擬的方法,來近似計算(2)中事件B的概率,
20組隨機數(shù)如下:
組別10 
 X 0.52 0.36 0.58 0.73 0.41 0.6 0.05 0.320.38  0.73
 Y 0.760.39 0.37 0.01 0.04 0.28 0.03  0.150.14 0.86
組別 11 1213 14 15 16 17 18 19 20 
 X 0.67 0.470.58  0.210.54  0.640.36  0.350.95  0.14
 Y 0.410.54  0.510.37  0.310.23  0.560.89  0.170.03
(X和Y都是0~1之間的均勻隨機數(shù))

查看答案和解析>>

同步練習(xí)冊答案