5.已知復(fù)數(shù)$z=\frac{i}{i+1}$,那么復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,求出復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo),則答案可求.

解答 解:$z=\frac{i}{i+1}$=$\frac{i(1-i)}{(1+i)(1-i)}=\frac{1+i}{2}=\frac{1}{2}+\frac{1}{2}i$,
則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:($\frac{1}{2}$,$\frac{1}{2}$),位于第一象限.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.從某病毒爆發(fā)的疫區(qū)返回本市若干人,為了迅速甄別是否有人感染病毒,對(duì)這些人抽血,并將血樣分成4組,每組血樣混合在一起進(jìn)行化驗(yàn).
(Ⅰ)若這些人中有1人感染了病毒.
①求恰好化驗(yàn)2次時(shí),能夠查出含有病毒血樣組的概率;
②設(shè)確定出含有病毒血樣組的化驗(yàn)次數(shù)為X,求E(X).
(Ⅱ)如果這些人中有2人攜帶病毒,設(shè)確定出全部含有病毒血樣組的次數(shù)Y的均值E(Y),請(qǐng)指出(Ⅰ)②中E(X)與E(Y)的大小關(guān)系.(只寫結(jié)論,不需說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,滿足b2-(a-c)2=(2-$\sqrt{3}$)ac
(Ⅰ)求角B的大;
(Ⅱ)若BC邊上的中線AD的長(zhǎng)為3,cos∠ADC=-$\frac{1}{4}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$均為單位向量,它們的夾角為$\frac{2π}{3}$,則|$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知平面向量$\overrightarrow a,\overrightarrow b$為單位向量,$|\overrightarrow a+\overrightarrow b|=1$,則向量$\overrightarrow a,\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù)),傾斜角a=$\frac{π}{6}$的直線l經(jīng)過點(diǎn)P(1,2).
(1)寫出圓C的標(biāo)準(zhǔn)方程和直線l的參數(shù)方程;
(2)設(shè)直線l與圓C相交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某人從銀行貸款a萬元,分五期等額還清,經(jīng)過一期的時(shí)間后第一次還款,期利率為r.
(1)按復(fù)利(本期的利息計(jì)入下期的本金生息)計(jì)算,每期須還多少萬元?
(2)按單利(本期的利息不計(jì)入下期的本金生息)計(jì)算,每期須還多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC中,邊a,b,c的對(duì)角分別為A,B,C,且$a=\sqrt{6}$,$c=\sqrt{2}$,$A=\frac{2π}{3}$.
(Ⅰ)求B,C及△ABC的面積;
(Ⅱ)已知函數(shù)f(x)=sinBsinπx-cosBcosπx,把函數(shù)y=f(x)的圖象向左平移$\frac{1}{2}$個(gè)單位得函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)(x∈[0,2])上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在正方體ABCD-A1B1C1D1中,P是A1B1的中點(diǎn),Q是AB的中點(diǎn),求異面直線A1Q與DP所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案