A. | $({0,\frac{1}{8}}]$ | B. | $({0,\frac{5}{8}}]$ | C. | $({0,\frac{1}{8}}]∪[{\frac{5}{8},1}]$ | D. | $({0,\frac{1}{8}}]∪[{\frac{1}{4},\frac{5}{8}}]$ |
分析 利用兩角和與差的三角函數(shù)化簡函數(shù)的解析式,利用函數(shù)的零點以及函數(shù)的周期,列出不等式求解即可.
解答 解:$\overrightarrow a=({sin\frac{ω}{2}x,sinωx}),\overrightarrow b=({sin\frac{ω}{2}x,\frac{1}{2}})$,其中ω>0,
則函數(shù)$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$=sin2($\frac{ω}{2}$x)+$\frac{1}{2}$sinωx-$\frac{1}{2}$=$\frac{1}{2}$-$\frac{1}{2}$cosωx+$\frac{1}{2}$sinωx-$\frac{1}{2}$=$\sqrt{2}$sin(ωx-$\frac{π}{4}$),
可得T=$\frac{2π}{ω}$≥π,0<ω≤2,f(x)在區(qū)間(π,2π)內(nèi)沒有零點,結(jié)合三角函數(shù)可得,
$\left\{\begin{array}{l}{πω-\frac{π}{4}≥0}\\{2πω-\frac{π}{4}≤π}\end{array}\right.$或$\left\{\begin{array}{l}{πω-\frac{π}{4}≥π}\\{2πω-\frac{π}{4}≤2π}\end{array}\right.$,
解得$\frac{1}{4}$≤ω≤$\frac{5}{8}$或0<ω≤$\frac{1}{8}$,
故選:D.
點評 本題考查函數(shù)的零點個數(shù)的判斷,三角函數(shù)的化簡求值,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{3}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13.59% | B. | 15.73% | C. | 27.18% | D. | 31.46% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{3}$ | C. | 5 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | -$\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com