設(shè)二次函數(shù)f(x)在區(qū)間[-1,4]上的最大值為5,且關(guān)于x的不等式f(x)<0的解集為區(qū)間(0,4).
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)于任意的x∈R,不等式f(2-2cosx)<f(1-cosx-m)恒成立,求實(shí)數(shù)m的取值范圍.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)設(shè)出函數(shù)的解析式,得到方程解出即可,(2)轉(zhuǎn)化為:|2-2cosx-2|<|1-cosx-m-2|即|2cosx|<|cosx+m+1|,即可得出m+1>1且-
m+1
3
<-1,求解即可.
解答: 解:(1)由題意設(shè)二次函數(shù)的解析式為f(x)=ax(x-4),且a>0,
再根據(jù)在區(qū)間[-1,4]上的最大值為f(-1)=5a=5,求得 a=1,
可得f(x)=x(x-4)=x2-4x.
(2)因?yàn)閒(x)的對(duì)稱軸為x=2且其圖象開口向上
所以f(2-2cosx)<f(1-cosx-m) 等價(jià)于
|2-2cosx-2|<|1-cosx-m-2|即|2cosx|<|cosx+m+1|,
-
m+1
3
<cosx<m+1,
∴只需:m+1>1且-
m+1
3
<-1,求解得出:m>0,m>2
即m>2
點(diǎn)評(píng):本題考查了求函數(shù)的解析式問題,求參數(shù)的范圍,考查轉(zhuǎn)化思想,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量|
AB
|=
3
,|
AC
|=2,
AB
AC
的夾角為30°,則|
AC
-
AB
|的值(  )
A、1
B、13
C、
7
2
D、2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=1-x2(x<-1),求f-1(-3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-2,2]內(nèi)隨機(jī)取兩個(gè)數(shù)a,b,則使得函數(shù)f(x)=
1
3
x3+ax2+(4-b2)x-2(x∈R)既有極大值,又有極小值的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二函數(shù)f(x)=ax2+bx+5(x∈R)滿足以下要求:
①函數(shù)f(x)的值域?yàn)閇1,+∞);②f(-2+x)=f(-2-x)對(duì)x∈R恒成立.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)M(x)=
f(lnx)
lnx+1
,求x∈[e,e2]時(shí)M(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①集合A={x|mx2-4x+4=0}中只有一個(gè)元素,則m=1;
②若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
③已知函數(shù)f(x)單調(diào)遞減,則f(
1-x2
)
的單調(diào)遞增區(qū)間為[0,1];
④已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數(shù).
其中正確說法的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-4)2=4,直線l:ax+y+2a=0.
(1)當(dāng)a為何值時(shí),直線l與圓C相切;
(2)當(dāng)直線l與圓C相交于A、B兩點(diǎn),且AB=2
2
時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間中,給出下面四個(gè)命題:
①過一點(diǎn)有且只有一個(gè)平面與已知直線垂直;
②垂直于同一個(gè)平面的兩條直線互相平行;
③垂直于同一個(gè)平面的兩條直線平行;
④平行于同一個(gè)平面的兩條直線平行;
其中正確的命題是
 
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的框圖:若輸出的S值滿足
1
32
<|S-1|<
1
8
,則自然數(shù)p的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案