精英家教網 > 高中數學 > 題目詳情

【題目】已知曲線的焦點是,、是曲線上不同兩點,且存在實數使得,曲線在點處的兩條切線相交于點

1)求點的軌跡方程;

2)點軸上,以為直徑的圓與的另一交點恰好是的中點,當時,求四邊形的面積.

【答案】1;(2.

【解析】

1)由題意知、、三點共線,可設直線的方程為,并設點,,將直線的方程與曲線的方程聯立,并列出韋達定理,利用導數求出曲線在點、處的切線方程,將兩切線方程聯立,求出點的坐標,即可得出點的軌跡方程;

2)由,利用坐標運算得出,代入韋達定理解出,根據對稱性取,求出線段的中點的坐標為,由轉化為可求出點的坐標,并得出點的坐標,利用弦長公式計算出,利用點到直線的距離公式分別計算出的高,并計算出這兩個三角形的面積,相加即可得出四邊形的面積.

1)曲線就是拋物線,它的焦點坐標為

存在實數使得,則、三點共線.

當直線斜率不存在時,不符合題意;

當直線斜率存在時,設直線的方程為,與聯立消去,整理得,判別式,設,

、就是方程的兩實根,,

,,切線斜率,

則曲線在點處的切線方程是,即①.

同理得曲線在點處的切線方程是②.

聯立①②得,得,所以點的坐標為.

因此,點的軌跡方程為;

2)已知,在(1)的解答的基礎上,

,則,.

,解得,代入中,解得,

注意到對稱性,求四邊形面積,只需取即可.

,設中點為,則

已知點在以點為直徑的圓上,則,

,由,得,即,

解得,則.

將直線的方程化為,

則點的距離.

所以

在(1)的解答中,聯立①②消去解得

則兩切線交點坐標為,

時,,此時,點的坐標為

的距離

所以

又已知兩側,所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數

1)求的值;

2時,求的取值范圍;

3)函數的性質通常指的是函數的定義域、值域、單調性、周期性、奇偶性等,請你探究函數其中的三個性質(直接寫出結論即可)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為考察某種藥物預防疾病的效果,進行動物試驗,調查了 105 個樣本,統(tǒng)計結果為:服藥的共有 55 個樣本,服藥但患病的仍有 10 個樣本,沒有服藥且未患病的有 30個樣本.

(1)根據所給樣本數據完成 列聯表中的數據;

(2)請問能有多大把握認為藥物有效?

(參考公式:獨立性檢驗臨界值表

概率

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

患病

不患病

合計

服藥

沒服藥

合計

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,直線)與橢圓交于,兩點(點軸的上方).

1)若,求的面積;

2)是否存在實數使得以線段為直徑的圓恰好經過坐標原點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,分別為內角所對的邊,且滿足.

(Ⅰ)的大。

(Ⅱ)現給出三個條件:.

試從中選出兩個可以確定的條件,寫出你的選擇并以此為依據求的面積 (只需寫出一個選定方案即可,選多種方案以第一種方案記分)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,則下列命題正確的是______填上你認為正確的所有命題的序號

函數的單調遞增區(qū)間是;函數的圖像關于點對稱;

函數的圖像向左平移個單位長度后,所得的圖像關于y軸對稱,m的最小值是;

若實數m使得方程上恰好有三個實數解,,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線L,曲線C的參數方程為為參數)

求直線L和曲線C的普通方程;

在曲線C上求一點Q,使得Q到直線L的距離最小,并求出這個最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓經過為坐標原點,線段的中點在圓上.

(1)求的方程;

(2)直線不過曲線的右焦點,與交于兩點,且與圓相切,切點在第一象限, 的周長是否為定值?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)實施光盤行動以后,某自助啤酒吧也制定了自己的行動計劃,進店的每一位客人需預交元,啤酒根據需要自己用量杯量取,結賬時,根據每桌剩余酒量,按一定倍率收費(如下表),每桌剩余酒量不足升的,按升計算(如剩余升,記為剩余).例如:結賬時,某桌剩余酒量恰好為升,則該桌的每位客人還應付.統(tǒng)計表明飲酒量與人數有很強的線性相關關系,下面是隨機采集的組數據(其中表示飲酒人數,()表示飲酒量):,,,,.

剩余酒量(單位:升)

升以上(含升)

結賬時的倍率

1)求由這組數據得到的關于的回歸直線方程;

2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了升啤酒,這時,酒吧服務生對小王說,根據他的經驗,小王和朋友量取的啤酒可能喝不完,可以考慮再邀請位或位朋友一起來飲酒,會更劃算.試向小王是否該接受服務生的建議?

參考數據:回歸直線的方程是,其中,.

查看答案和解析>>

同步練習冊答案