19.已知數(shù)列1,$\sqrt{3},\sqrt{5},\sqrt{7},3,\sqrt{11},…\sqrt{2n-1}$,則5是這個(gè)數(shù)列的( 。
A.第12項(xiàng)B.第13項(xiàng)C.第14項(xiàng)D.第25項(xiàng)

分析 根據(jù)數(shù)列的通項(xiàng)公式解方程即可.

解答 解:數(shù)列的通項(xiàng)公式為$\sqrt{2n-1}$,
由$\sqrt{2n-1}$=5得2n-1=25,
則2n=26,
解得n=13,
故選:B

點(diǎn)評(píng) 本題主要考查數(shù)列的通項(xiàng)公式的應(yīng)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知P為拋物線y2=-6x上一個(gè)動(dòng)點(diǎn),Q為圓${x^2}+{(y-6)^2}=\frac{1}{4}$上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到y(tǒng)軸距離之和的最小值是( 。
A.$\frac{{3\sqrt{17}-7}}{2}$B.$\frac{{3\sqrt{17}-4}}{2}$C.$\frac{{3\sqrt{17}-1}}{2}$D.$\frac{{3\sqrt{17}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=sinx-$\sqrt{3}$cosx+2,記函數(shù)f(x)的最小正周期為β,向量$\overrightarrow a=(2,cosα)$,$\overrightarrow b=(1,tan(α+\frac{β}{2}))$,$(0<α<\frac{π}{4})$,且$\overrightarrow a•\overrightarrow b=\frac{7}{3}$
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求$\frac{{2{{cos}^2}α-sin2(α+β)}}{cosα-sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.雙曲線$\frac{x^2}{16}-\frac{y^2}{4}=1$的離心率e的值為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.集合A={x|-1≤x≤2},B={x|x<1},則A∩B=( 。
A.{x|x≥-1}B.{x|x≤2}C.{x|-1≤x≤2}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知:$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是同一平面內(nèi)的三個(gè)向量,其中向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2)
(1)若k$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-4$\overrightarrow$平行,求實(shí)數(shù)k的值;
(2)若k$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-4$\overrightarrow$垂直,求實(shí)數(shù)k的值.
(3)若|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.定義在(-∞,+∞)上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-1,0]上是增函數(shù),下面是關(guān)于f(x)的判斷:
①f(8)=f(0)
②f(x)在[0,1]上是增函數(shù);
③f(x)的圖象關(guān)于直線x=1對(duì)稱
④f(x)關(guān)于點(diǎn)P($\frac{1}{2},0$)對(duì)稱.
其中正確的判斷是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若函數(shù)為f(x)=x2-2mx-2m-1
(1)求f(x)>0的解集;
(2)若f(x)>-4m-2對(duì)滿足0≤x≤1的所有實(shí)數(shù)x都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=sin$\frac{2x}{3}$+cos($\frac{2x}{3}$-$\frac{π}{6}$)圖象的相鄰兩條對(duì)稱軸之間的距離等于$\frac{3π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案