A. | $\frac{{3\sqrt{17}-7}}{2}$ | B. | $\frac{{3\sqrt{17}-4}}{2}$ | C. | $\frac{{3\sqrt{17}-1}}{2}$ | D. | $\frac{{3\sqrt{17}+1}}{2}$ |
分析 先根據(jù)拋物線方程求得焦點坐標(biāo),根據(jù)圓的方程求得圓心坐標(biāo),根據(jù)拋物線的定義可知P到準線的距離等于點P到焦點的距離,進而問題轉(zhuǎn)化為求點P到點Q的距離與點P到拋物線的焦點距離之和的最小值,根據(jù)圖象可知當(dāng)P,Q,F(xiàn)三點共線時P到點Q的距離與點P到拋物線的y軸距離之和的最小,為圓心到焦點F的距離減去圓的半徑減去y軸與準線的距離.
解答 解:由于P為拋物線y2=-6x上一個動點,Q為圓${x^2}+{(y-6)^2}=\frac{1}{4}$上一個動點,那么點P到點Q的距離與點P到y(tǒng)軸距離之和的最小值,可結(jié)合拋物線的定義,P到y(tǒng)軸距離為P到焦點距離減去$\frac{3}{2}$,
則最小值為拋物線的焦點到圓心的距離減去半徑和$\frac{3}{2}$,
即為$\frac{3\sqrt{17}-4}{2}$,
故選B.
點評 本題主要考查了拋物線的定義的應(yīng)用.考查了學(xué)生轉(zhuǎn)化和化歸,數(shù)形結(jié)合等數(shù)學(xué)思想.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第12項 | B. | 第13項 | C. | 第14項 | D. | 第25項 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com