13.已知圓心在第二象限,半徑為2的圓C與兩坐標(biāo)軸都相切.
(Ⅰ)求圓C的方程;
(Ⅱ)求圓C關(guān)于直線x-y+2=0對稱的圓的方程.

分析 (Ⅰ)由題意可得所求的圓在第二象限,圓心為(-2,2),半徑為2,可得所求的圓的方程.
(Ⅱ)先求出圓x2+y2-2y=0的圓心和半徑;再利用兩點(diǎn)關(guān)于已知直線對稱所具有的結(jié)論,求出所求圓的圓心坐標(biāo)即可求出結(jié)論.

解答 解:(Ⅰ)由題意可得所求的圓在第二象限,圓心為(-2,2),半徑為2,
∴圓的方程為(x+2)2+(y-2)2=4;
(Ⅱ)設(shè)(-2,2)關(guān)于直線x-y+2=0對稱點(diǎn)為:(a,b)
則有$\left\{\begin{array}{l}{\frac{a-2}{2}-\frac{b+2}{2}+2=0}\\{\frac{b-2}{a+2}=-1}\end{array}\right.$⇒a=b=0.
故所求圓的圓心為:(0,0).半徑為2.
所以所求圓的方程為x2+y2=4.

點(diǎn)評 本題主要考查用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程的方法,求出圓心坐標(biāo)和半徑的值,是解題的關(guān)鍵,屬于中檔題.解決問題的關(guān)鍵在于會(huì)求點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo),主要利用兩個(gè)結(jié)論:①兩點(diǎn)的連線和已知直線垂直;②兩點(diǎn)的中點(diǎn)在已知直線上

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的值域;
(2)若f(x)≤-alnx+4恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.三個(gè)函數(shù):y=cosx,y=sinx,y=tanx,從中隨機(jī)抽取一個(gè)函數(shù),則抽出的函數(shù)是奇函數(shù)的概率為(  )
A.$\frac{1}{3}$B.0C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l:3x-y-6=0與圓C:x2+y2-2x-4y=0.求:
(1)截得的弦AB的長;
(2)△AOB面積(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知兩點(diǎn)A(-1,0),B(2,1),直線l過點(diǎn)P(0,-1)且與線段AB有公共點(diǎn),則直線l的斜率k的取值范圍是( 。
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-1,0)∪(0,1]D.[-1,0)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的是( 。
A.向量$\overrightarrow{AB}$∥$\overrightarrow{CD}$就是$\overrightarrow{AB}$所在的直線平行于$\overrightarrow{CD}$所在的直線
B.共線向量是在一條直線上的向量
C.長度相等的向量叫做相等向量
D.零向量長度等于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=a(1-2|x-$\frac{1}{2}$|),a為常數(shù)且a>0,
(Ⅰ)求函數(shù)f(x)的圖象與x軸圍成的三角形的面積;
(Ⅱ)若x0滿足f(f(x0))=x0,且f(x0)≠x0,則稱x0為函數(shù)f(x)的二階周期點(diǎn),如果f(x)有兩個(gè)二階周期點(diǎn)x1,x2,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,多面體AED-BFC的直觀圖及三視圖如圖所示,M、N分別為AF、BC的中點(diǎn).求證:
(1)MN∥平面CDEF;
(2)CM⊥AF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.$\overrightarrow{{A}_{1}{A}_{2}}$+$\overrightarrow{{A}_{2}{A}_{3}}$+$\overrightarrow{{A}_{3}{A}_{4}}$+$\overrightarrow{{A}_{4}{A}_{5}}$=$\overrightarrow{{A}_{1}{A}_{5}}$.

查看答案和解析>>

同步練習(xí)冊答案