15.已知點(diǎn)A是雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a,b>0)右支上一點(diǎn),F(xiàn)是右焦點(diǎn),若△AOF(O是坐標(biāo)原點(diǎn))是等邊三角形,則該雙曲線離心率e為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

分析 利用已知條件求出A坐標(biāo),代入雙曲線方程,可得a、b、c,關(guān)系,然后求解離心率即可.

解答 解:依題意及三角函數(shù)定義,點(diǎn)A(ccos$\frac{π}{3}$,csin$\frac{π}{3}$),即A($\frac{1}{2}c$,$\frac{\sqrt{3}}{2}c$),
代入雙曲線方程$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$,
可得  b2c2-3a2c2=4a2b2,又c2=a2+b2,得e2=4+2$\sqrt{3}$,e=$\sqrt{3}+1$,
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,直線l經(jīng)過點(diǎn)F1及虛軸的一個(gè)端點(diǎn),且點(diǎn)F2到直線l的距離等于實(shí)半軸的長,則雙曲線的離心率為( 。
A.$\frac{{1+\sqrt{5}}}{2}$B.$\frac{{3+\sqrt{5}}}{4}$C.$\sqrt{\frac{{1+\sqrt{5}}}{2}}$D.$\frac{{\sqrt{3+\sqrt{5}}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.《九章算術(shù)》是我國古代的優(yōu)秀數(shù)學(xué)著作,在人類歷史上第一次提出負(fù)數(shù)的概念,內(nèi)容涉及方程、幾何、數(shù)列、面積、體積的計(jì)算等多方面.書的第6卷19題,“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升.”如果竹由下往上均勻變細(xì)(各節(jié)容量可視為等差數(shù)列),則中間剩下的兩節(jié)容量是多少升( 。
A.$2\frac{23}{66}$B.$2\frac{3}{22}$C.$2\frac{61}{66}$D.$1\frac{10}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若tan(π+θ)=2,則$\frac{2sinθ-cosθ}{sinθ+2cosθ}$的值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合P={x∈R|0≤x≤3},Q={x∈R|x2≥4},則P∩(∁RQ)=(  )
A.[0,3]B.(0,2]C.[0,2)D.(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知不恒為零的函數(shù)f(x)在定義域[0,1]上的圖象連續(xù)不間斷,滿足條件f(0)=f(1)=0,且對(duì)任意x1,x2∈[0,1]都有|f(x1)-f(x2)|≤$\frac{1}{3}$|x1-x2|,則對(duì)下列四個(gè)結(jié)論:
①若f(1-x)=f(x)且0≤x≤$\frac{1}{2}$時(shí),f(x)=$\frac{1}{20}$x(x-$\frac{1}{2}$),則當(dāng)$\frac{1}{2}$<x≤1時(shí),f(x)=$\frac{1}{20}$(1-x)($\frac{1}{2}$-x);
②若對(duì)?x∈[0,1]都有f(1-x)=-f(x),則y=f(x)至少有3個(gè)零點(diǎn);
③對(duì)?x∈[0,1],|f(x)|≤$\frac{1}{6}$恒成立;
④對(duì)?x1,x2∈[0,1],|f(x1)-f(x2)|≤$\frac{1}{6}$恒成立.
其中正確的結(jié)論個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)).以點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$
(Ⅰ)將直線l化為直角坐標(biāo)方程;
(Ⅱ)求曲線C上的一點(diǎn)Q 到直線l 的距離的最大值及此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-ax2(a∈R)
(Ⅰ) 討論f(x)的單調(diào)性;
(Ⅱ) 若對(duì)于x∈(0,+∞),f(x)≤a-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)為A,右焦點(diǎn)為F(c,0),弦PQ過F且垂直于x軸,過點(diǎn)P、點(diǎn)Q分別作直線AQ、AP的垂線,兩垂線交于點(diǎn)B,若B到直線PQ的距離小于2(a+c),則該雙曲線離心率的取值范圍是( 。
A.(1,$\sqrt{3}$)B.($\sqrt{3}$,+∞)C.(0,$\sqrt{3}$)D.(2,$\sqrt{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案