7.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個最高點(diǎn)和第一個最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+2π,-2)則f(x)=2sin($\frac{1}{2}$x+$\frac{π}{6}$).

分析 根據(jù)圖象求出A,T,求出ω,圖象經(jīng)過(0,1),求出φ,然后求f(x)的解析式

解答 解:(1)由題意可得:A=2,$\frac{T}{2}$=2π,T=4π
∴ω=$\frac{2π}{T}$=$\frac{2π}{4π}$=$\frac{1}{2}$,
∴f(x)=2sin($\frac{1}{2}$x+φ)
∴f(0)=2sinφ=1,
由|φ|<$\frac{π}{2}$),
∴φ=$\frac{π}{6}$.(
∴$f(x)=2sin(\frac{1}{2}x+\frac{π}{6})$,
故答案為:2sin($\frac{1}{2}$x+$\frac{π}{6}$)

點(diǎn)評 本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查計算能力,視圖能力,是基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線l的斜率是-1,且過曲線$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=3+2sinθ}\end{array}\right.$(θ為參數(shù))的對稱中心,則直線l的方程是x+y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,a、b、c分別為角A、B、C所對應(yīng)的三角形的邊長,若4a$\overrightarrow{BC}$+2b$\overrightarrow{CA}$+3c$\overrightarrow{AB}$=$\overrightarrow{0}$,則cosB=( 。
A.$-\frac{29}{36}$B.$\frac{29}{36}$C.$\frac{11}{24}$D.$-\frac{11}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若△ABC滿足(2$\overrightarrow{CA}$-$\overrightarrow{CB}$)•($\overrightarrow{CA}$-2$\overrightarrow{CB}$)=0,且|$\overrightarrow{AB}$|=2,則|$\overrightarrow{CA}$+$\overrightarrow{CB}$|=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若x,y滿足約束條件:$\left\{\begin{array}{l}{x>0}\\{x+2y≥3}\\{2x+y≤3}\end{array}\right.$;則x-y的取值范圍為( 。
A.[0,3]B.[0,$\frac{3}{2}$]C.[-$\frac{3}{2}$,0]D.[-3,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z滿足z(1+i)3=1-i,則復(fù)數(shù)z對應(yīng)的點(diǎn)在( 。┥希
A.直線y=-$\frac{1}{2}$xB.直線y=$\frac{1}{2}$xC.直線x=-$\frac{1}{2}$D.直線 y=-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個幾何體的三視圖如圖所示,其中俯視圖為正方形及其一條對角線,則該幾何體的體積為( 。
A.32B.48C.56D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓的方程為x2+y2-2x-6y+1=0,那么圓心坐標(biāo)為( 。
A.(-1,-3)B.(1,-3)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z滿足(1+i)z=2i(i為虛數(shù)單位),則|z|=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案