18.在△ABC中,a、b、c分別為角A、B、C所對(duì)應(yīng)的三角形的邊長(zhǎng),若4a$\overrightarrow{BC}$+2b$\overrightarrow{CA}$+3c$\overrightarrow{AB}$=$\overrightarrow{0}$,則cosB=(  )
A.$-\frac{29}{36}$B.$\frac{29}{36}$C.$\frac{11}{24}$D.$-\frac{11}{24}$

分析 由已知及向量減法的平行四邊形法則可得4a$\overrightarrow{BC}$+2b$\overrightarrow{CA}$+3c$\overrightarrow{AB}$=$\overrightarrow{0}$,即(4a-3c)$\overrightarrow{BC}$+(2b-3c)$\overrightarrow{CA}$=$\overrightarrow{0}$,根據(jù)向量的基本定理可得a,b,c之間的關(guān)系,然后利用余弦定理即可求cosB.

解答 解:∵4a$\overrightarrow{BC}$+2b$\overrightarrow{CA}$+3c$\overrightarrow{AB}$=$\overrightarrow{0}$,
∴(4a-3c)$\overrightarrow{BC}$+(2b-3c)$\overrightarrow{CA}$=$\overrightarrow{0}$,
∵$\overrightarrow{BC}$,$\overrightarrow{CA}$不共線
∴$\left\{\begin{array}{l}{4a-3c=0}\\{2b-3c=0}\end{array}\right.$即a=$\frac{3c}{4}$,b=$\frac{3c}{2}$,
則cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{\frac{9{c}^{2}}{16}+{c}^{2}-\frac{9{c}^{2}}{4}}{2×\frac{3c}{4}×c}$=-$\frac{11}{24}$;
故選D.

點(diǎn)評(píng) 本題主要考查了向量減法的四邊形法則,平面向量的基本定理及余弦定理的綜合應(yīng)用,解題的關(guān)鍵是把已知變形為(4a-3c)$\overrightarrow{BC}$+(2b-3c)$\overrightarrow{CA}$=$\overrightarrow{0}$.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+2014x-2015,x≤0}\\{2-x+lnx,x>0}\end{array}\right.$,則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.某四棱錐的三視圖如圖所示,則該四棱錐的側(cè)面積為2$\sqrt{39}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.有4名男醫(yī)生、3名女醫(yī)生,從中選出2名男醫(yī)生、1名女醫(yī)生組成一個(gè)醫(yī)療小組,則不同的選法共有(  )
A.A${\;}_{4}^{2}$•A${\;}_{3}^{1}$B.C${\;}_{4}^{2}$•C${\;}_{3}^{1}$
C.C${\;}_{7}^{3}$--C${\;}_{4}^{2}$•C${\;}_{3}^{1}$D.A${\;}_{7}^{3}$--A${\;}_{4}^{2}$•A${\;}_{3}^{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知變量x,y滿足約數(shù)條件$\left\{\begin{array}{l}{y≥2x-2}\\{y>-x-1}\\{y≤\sqrt{1-{x}^{2}}}\end{array}\right.$,則z=x-y的最小值為-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角是$\frac{π}{3}$,若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則|2$\overrightarrow{a}$-$\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是(  )
A.$\frac{π}{3}$cm3B.$\frac{2π}{3}$cm3C.πcm3D.$\frac{4π}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+2π,-2)則f(x)=2sin($\frac{1}{2}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖1,直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=2AB=4,BC=2.AE∥BC交CD于點(diǎn)E,點(diǎn)G,H分別在線段DA,DE上,且GH∥AE.將圖1中的△AED沿AE翻折,使平面ADE⊥平面ABCE(如圖2所示),連結(jié)BD、CD,AC、BE.

(Ⅰ)求證:平面DAC⊥平面DEB;
(Ⅱ)當(dāng)三棱錐B-GHE的體積最大時(shí),求直線BG與平面BCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案