A. | qx+3y+p=0 | B. | qx-3y+p=0 | C. | px+3y+q=0 | D. | px-3y+q=0 |
分析 分別設(shè)出A和B的坐標(biāo),根據(jù)拋物線上兩點的橫坐標(biāo)都是方程的解得到方程有兩個不等的實數(shù)根,即△>0,列出p與q的關(guān)系式,在這個關(guān)系式成立時,分別把A和B的坐標(biāo)代入拋物線解析式和方程中,分別消去平方項,根據(jù)兩等式的特點即可得到直線AB的方程.
解答 解:設(shè)A(x1,y1),B(x2,y2),且方程有兩個不同的解得到:△=p2-4q>0,
把A的坐標(biāo)代入拋物線解析式和已知的方程得:x12=3y1①,x12+px1+q=0②,
①-②整理得:px1+3y1+q=0③;
同理把B的坐標(biāo)代入拋物線解析式和已知的方程,化簡可得:px2+3y2+q=0④,
③④表示經(jīng)過A和B的方程,所以直線AB的方程是:px+3y+q=0(△=p2-4q>0).
故答案選:C.
點評 本題考查學(xué)生會求動點的軌跡方程,掌握一元二次方程有兩個不相等的實數(shù)根的條件為△>0,是一道綜合題,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 72n+1 | B. | 22n+1 | C. | 32n+1 | D. | 52n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i≤2014? | B. | i≤2015? | C. | i≤2016? | D. | i≤2017? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20、8 | B. | 24、10 | C. | 10.5、24.5 | D. | 24.5、10.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com