分析 (1)根據(jù)垂徑定理可知圓心O在直線y=$\frac{p}{4}$上,根據(jù)O到準線的距離列方程解出p,得出拋物線方程;
(2)求出切線方程,聯(lián)立方程組解出M的坐標,得出向量$\overrightarrow{MF},\overrightarrow{AB}$的坐標,帶入向量的數(shù)量積公式運算.
解答 解:(1)拋物線的準線方程為y=-$\frac{p}{2}$,焦點F(0,$\frac{p}{2}$).
∵圓O經(jīng)過O,F(xiàn),∴O在直線y=$\frac{p}{4}$上.
∴O到拋物線的準線的距離d=$\frac{p}{2}+\frac{p}{4}=\frac{3}{2}$,∴p=2.
∴拋物線的方程為x2=4y.
(2)設A(x1,$\frac{{{x}_{1}}^{2}}{4}$),B(x2,$\frac{{{x}_{2}}^{2}}{4}$).
由x2=4y得y=$\frac{{x}^{2}}{4}$,∴y′=$\frac{x}{2}$.
∴直線AM的方程為y-$\frac{{{x}_{1}}^{2}}{4}$=$\frac{{x}_{1}}{2}$(x-x1),即y=$\frac{{x}_{1}}{2}x-$$\frac{{{x}_{1}}^{2}}{4}$,
直線BM的方程為y-$\frac{{{x}_{2}}^{2}}{4}$=$\frac{{x}_{2}}{2}$(x-x2),即y=$\frac{{x}_{2}}{2}x$-$\frac{{{x}_{2}}^{2}}{4}$.
聯(lián)立方程組$\left\{\begin{array}{l}{y=\frac{{x}_{1}}{2}x-\frac{{{x}_{1}}^{2}}{4}}\\{y=\frac{{x}_{2}}{2}x-\frac{{{x}_{2}}^{2}}{4}}\end{array}\right.$,解得M($\frac{{x}_{1}+{x}_{2}}{2}$,-1).
∴$\overrightarrow{MF}$=(-$\frac{{x}_{1}+{x}_{2}}{2}$,2),$\overrightarrow{AB}$=(x2-x1,$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{4}$),
∴$\overrightarrow{MF}$•$\overrightarrow{MB}$-$\overrightarrow{MF}$•$\overrightarrow{MA}$=$\overrightarrow{MF}•$($\overrightarrow{MB}-\overrightarrow{MA}$)=$\overrightarrow{MF}•\overrightarrow{AB}$=$\frac{{{x}_{1}}^{2}-{{x}_{2}}^{2}}{2}$+$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{2}$=0.
點評 本題考查了拋物線的性質(zhì),曲線的交點坐標,切線方程,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | qx+3y+p=0 | B. | qx-3y+p=0 | C. | px+3y+q=0 | D. | px-3y+q=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,0) | B. | [-2,0) | C. | ∅ | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8x+16y+3=0 | B. | 8x-16y+3=0 | C. | 16x+8y+3=0 | D. | 16x-8y+3=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com