【題目】如圖,墻上有一壁畫,最高點離地面4米,最低點離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角

(1)若問:觀察者離墻多遠(yuǎn)時,視角最大?

(2)若當(dāng)變化時,求的取值范圍.

【答案】(1)當(dāng)觀察者離墻米時,視角最大;(2)

【解析】試題分析:(1)利用兩角差的正切公式建立函數(shù)關(guān)系式,根據(jù)基本不等式求最值最后根據(jù)正切函數(shù)單調(diào)性確定最大時取法,(2)利用兩角差的正切公式建立等量關(guān)系式,進(jìn)行參變分離得,再根據(jù)a的范圍確定范圍,最后解不等式得的取值范圍.

試題解析:(1)當(dāng)時,過的垂線,垂足為,

,且,

由已知觀察者離墻米,且,

所以,

當(dāng)且僅當(dāng),取“”.

又因為上單調(diào)增,所以,當(dāng)觀察者離墻米時,視角最大.

(2)由題意得,,又,

所以

所以,

當(dāng),,所以,

,解得,

又因為,所以

所以的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,是半徑為的球面上的點,,,點上的射影為,則三棱錐體積的最大值是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一200名學(xué)生的期中考試語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻數(shù)分布直方圖如下

(1)計算這次考試的數(shù)學(xué)平均分,并比較語文和數(shù)學(xué)哪科的平均分較高(假設(shè)數(shù)學(xué)成績在頻率分布直方圖中各段是均勻分布的);

(2)如果成績大于85分的學(xué)生為優(yōu)秀,這200名學(xué)生中本次考試語文、數(shù)學(xué)優(yōu)秀的人數(shù)大約各多少人?

(3)如果語文和數(shù)學(xué)兩科都優(yōu)秀的共有4人,從(2)中的這些同學(xué)中隨機抽取3人,設(shè)三人中兩科都優(yōu)秀的有,的分布列和數(shù)學(xué)期望.

(附參考公式)若,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)討論函數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).(為自然對數(shù)的底數(shù))

(1)設(shè);

①若函數(shù)處的切線過點,求的值;

②當(dāng)時,若函數(shù)上沒有零點,求的取值范圍.

(2)設(shè)函數(shù),且,求證:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)隨機調(diào)查了歲到歲之間的位網(wǎng)上購物者的年齡分布情況,并將所得數(shù)據(jù)按照,,分成組,繪制成頻率分布直方圖(如圖).

(1)求頻率分布直方圖中實數(shù)的值及這位網(wǎng)上購物者中年齡在內(nèi)的人數(shù);

(2)現(xiàn)采用分層抽樣的方法從參與調(diào)查的位網(wǎng)上購物者中隨機抽取人,再從這人中任選人,設(shè)這人中年齡在內(nèi)的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知橢圓)的左焦點為,離心率為,過點且垂直于長軸的弦長為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點分別是橢圓的左、右頂點,若過點的直線與橢圓相交于不同兩點、

①求證:;

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來隨著素質(zhì)教育的不斷推進(jìn),高考改革趨勢明顯.國家教育部先后出臺了有關(guān)高考的《學(xué)業(yè)水平考試》、《綜合素質(zhì)評價》、《加分項目瘦身與自主招生》三個重磅文件,引起社會極大關(guān)注,有人說:男孩苦,女孩樂!為了了解某地區(qū)學(xué)生和包括老師,家長在內(nèi)的社會人士對高考改革的看法,某媒體在該地區(qū)選擇了人,,就是否“贊同改革”進(jìn)行調(diào)查,調(diào)查統(tǒng)計的結(jié)果如下表:

贊同

不贊同

無所謂

在校學(xué)生

社會人士

已知在全體樣本中隨機抽取人,抽到持“不贊同”態(tài)度的人的概率為.

(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進(jìn)行問卷訪談,文應(yīng)該在持“無所謂”態(tài)度的人中抽取多少人?

(2)在持“不贊同”態(tài)度的人中,用分層抽樣方法抽取人,若從人中任抽人進(jìn)一步深入調(diào)查,為更多了解學(xué)生的意愿,要求在校學(xué)生人數(shù)不少于社會人士人士,求恰好抽到兩名在校學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,兩點的極坐標(biāo)分別為.

(1)求圓的普通方程和直線的直角坐標(biāo)方程;

(2)是圓上任一點,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案