20.若函數(shù)f(x)在[a,b]上的值域為[$\frac{a}{2}$,$\frac{2}$],則稱函數(shù)f(x)為“和諧函數(shù)”.下列函數(shù)中:
①g(x)=$\sqrt{x-1}$+$\frac{1}{4}$;②h(x)=${log_{\frac{1}{2}}}$(($\frac{1}{2}$)x+$\frac{1}{8}$);③p(x)=$\frac{1}{x}$;④q(x)=lnx.
“和諧函數(shù)”的個數(shù)為( 。
A.1個B.2個C.3個D.4個

分析 根據(jù)“和諧函數(shù)”的定義,結(jié)合函數(shù)的單調(diào)性,建立條件關(guān)系,利用數(shù)形結(jié)合進行判斷即可.

解答 解:由題意知,若f(x)在區(qū)間[a,b]上單調(diào)遞增,須滿足:f(a)=$\frac{a}{2}$,f(b)=$\frac{2}$,
若f(x)在區(qū)間[a,b]上單調(diào)遞減,須滿足:f(b)=$\frac{a}{2}$,f(a)=$\frac{2}$,
①g(x)=$\sqrt{x-1}$+$\frac{1}{4}$在[1,+∞)為增函數(shù);
則f(a)=$\frac{a}{2}$,f(b)=$\frac{2}$,
即a,b是函數(shù)g(x)=$\frac{x}{2}$的兩個根,
即$\sqrt{x-1}$+$\frac{1}{4}$=$\frac{x}{2}$,
則$\sqrt{x-1}$=-$\frac{1}{4}$+$\frac{x}{2}$,
作出函數(shù)y=$\sqrt{x-1}$和y=-$\frac{1}{4}$+$\frac{x}{2}$的圖象如圖:

則兩個函數(shù)有兩個交點,滿足條件.
②h(x)=${log_{\frac{1}{2}}}$(($\frac{1}{2}$)x+$\frac{1}{8}$)是增函數(shù);
則f(a)=$\frac{a}{2}$,f(b)=$\frac{2}$,
即a,b是函數(shù)h(x)=$\frac{x}{2}$的兩個根,
即${log_{\frac{1}{2}}}$(($\frac{1}{2}$)x+$\frac{1}{8}$)=$\frac{x}{2}$,
即($\frac{1}{2}$)x+$\frac{1}{8}$=($\frac{1}{2}$)${\;}^{\frac{x}{2}}$=($\frac{\sqrt{2}}{2}$)x,
作出y=($\frac{1}{2}$)x+$\frac{1}{8}$和y=($\frac{\sqrt{2}}{2}$)x,的圖象如圖:

則兩個函數(shù)有兩個交點,滿足條件.
③p(x)=$\frac{1}{x}$為減函數(shù);
則p(b)=$\frac{a}{2}$,p(a)=$\frac{2}$,
即$\left\{\begin{array}{l}{\frac{1}{a}=\frac{2}}\\{\frac{1}=\frac{a}{2}}\end{array}\right.$,即ab=2,當a=$\frac{1}{2}$,b=4時,滿足條件.
④q(x)=lnx在(0,+∞)為增函數(shù).
則q(a)=$\frac{a}{2}$,q(b)=$\frac{2}$,
即a,b是函數(shù)q(x)=$\frac{x}{2}$的兩個根,
即lnx=$\frac{x}{2}$,
作出y=lnx和y=$\frac{x}{2}$的圖象如圖:

則兩個圖象沒有交點,不滿足條件.
故選:C

點評 本題主要考查函數(shù)與方程的應(yīng)用,根據(jù)函數(shù)定義域和值域的關(guān)系,轉(zhuǎn)化為函數(shù)與方程的關(guān)系,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求滿足下列條件的函數(shù)f(x).
(1)f(x)是三次函數(shù),且f(0)=3,f′(0)=0,f′(1)=-3,f′(2)=0.
(2)f(x)是二次函數(shù),且x2f′(x)-(2x-1)f(x)=1對x∈R恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市在“國際禁毒日”期間,連續(xù)若干天發(fā)布了“珍愛生命,原理毒品”的電視公益廣告,期望讓更多的市民知道毒品的危害性,禁毒志愿者為了了解這則廣告的宣傳效果,隨機抽取了100名年齡階段性在[10,20),[20,30),[30,40),[40,50),[50,60)的市民進行問卷調(diào)查,由此得到樣本頻率分布直方圖如圖所示.
(Ⅰ)求隨機抽取的市民中年齡段在[30,40)的人數(shù);
(Ⅱ)從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取5人,求[50,60)年齡段抽取的人數(shù);
(Ⅲ)從(Ⅱ)中方式得到的5人中再抽取2人作為本次活動的獲獎?wù),記X為年齡在[50,60)年齡段的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=sin22x-sin2xcos2x.
(1)化簡函數(shù)f(x)的表達式,并求函數(shù)f(x)的最小正周期;
(2)若點A(x0,y0)是y=f(x)圖象的對稱中心,且${x_0}∈[{0,\frac{π}{2}}]$,求點A的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=4,$\overrightarrow{a}$在$\overrightarrow$方向上的投影是$\frac{1}{2}$,則$\overrightarrow{a}$•$\overrightarrow$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知M={x|x=a2+2a+2,a∈N},N={y|y=b2-4b+5,b∈N},則M,N之間的關(guān)系是( 。
A.M⊆NB.N⊆M
C.M=ND.M與N之間沒有包含關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z(1+i)=2i,則復(fù)數(shù)z=( 。
A.1+iB.1-iC.$\frac{1}{2}$+$\frac{1}{2}$iD.$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{2-i}{i}$的共軛復(fù)數(shù)$\overline{z}$對應(yīng)的點所在的象限( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在函數(shù)①y=x-1;②y=2x;③y=log2x;④y=tanx中,圖象經(jīng)過點(1,1)的函數(shù)的序號是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案