15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=4,$\overrightarrow{a}$在$\overrightarrow$方向上的投影是$\frac{1}{2}$,則$\overrightarrow{a}$•$\overrightarrow$=2.

分析 設(shè)$\overrightarrow{a},\overrightarrow$的夾角為θ,則|$\overrightarrow{a}$|cosθ=$\frac{1}{2}$,于是$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cosθ=4×$\frac{1}{2}$=2.

解答 解:設(shè)$\overrightarrow{a},\overrightarrow$的夾角為θ,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為|$\overrightarrow{a}$|cosθ=$\frac{1}{2}$,∴$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cosθ=4×$\frac{1}{2}$=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=cos2x+sinx+1的值域?yàn)閇0,$\frac{9}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}的首項(xiàng)a2=5,前4項(xiàng)和S4=28.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(-1)nan,求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)復(fù)數(shù)zn=xn+i•yn,其中xnyn∈R,n∈N*,i為虛數(shù)單位,zn+1=(1+i)•zn,z1=3+4i,復(fù)數(shù)zn在復(fù)平面上對(duì)應(yīng)的點(diǎn)為Zn
(1)求復(fù)數(shù)z2,z3,z4的值;
(2)是否存在正整數(shù)n使得$\overrightarrow{O{Z_n}}$∥$\overrightarrow{O{Z_1}}$?若存在,求出所有滿足條件的n;若不存在,請(qǐng)說明理由;
(3)求數(shù)列{xn•yn}的前102項(xiàng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,1),向量$\overrightarrow{AB}$=(-1,1),則$(\overrightarrow{OA}+\overrightarrow{OB})•(\overrightarrow{OA}-\overrightarrow{OB})$=( 。
A.-4B.-2C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)在[a,b]上的值域?yàn)閇$\frac{a}{2}$,$\frac{2}$],則稱函數(shù)f(x)為“和諧函數(shù)”.下列函數(shù)中:
①g(x)=$\sqrt{x-1}$+$\frac{1}{4}$;②h(x)=${log_{\frac{1}{2}}}$(($\frac{1}{2}$)x+$\frac{1}{8}$);③p(x)=$\frac{1}{x}$;④q(x)=lnx.
“和諧函數(shù)”的個(gè)數(shù)為(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場(chǎng)隨機(jī)采訪男性、女性用戶各50名,將男性、女性使用微信的時(shí)間分成5組:(0,2],(2,4],(4,6],(6,8],(8,10]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(Ⅰ)根據(jù)女性頻率直方圖估計(jì)女性使用微信的平均時(shí)間;
(Ⅱ)若每天玩微信超過4小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,
請(qǐng)你根據(jù)已知條件完成2×2的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“微信控”與“性別”有關(guān)?
微信控非微信控合計(jì)
男性50
女性50
合計(jì)100
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.將直線y=2x繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)$\frac{π}{4}$,則所得直線的斜率為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若sinα=2cosα,則$\frac{sinα-cosα}{sinα+cosα}$的值為(  )
A.1B.-$\frac{1}{3}$C.$\frac{1}{3}$D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案