4.在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P到定點(diǎn)M(0,2)和它到定直線y=0的距離相等,設(shè)點(diǎn)P的軌跡為C.
(1)求曲線C的方程;
(2)過定點(diǎn)M作直線l與曲線C相交于A、B兩點(diǎn),若點(diǎn)N是點(diǎn)M關(guān)于原點(diǎn)對稱的點(diǎn),求△ANB面積的最小值.

分析 (1)設(shè)P(x,y),由兩點(diǎn)間距離公式和點(diǎn)到直線的距離公式列出方程,由此能求出曲線C的方程.
(2)設(shè)直線l的方程為y=kx+2,聯(lián)立$\left\{\begin{array}{l}{y=kx+2}\\{{x}^{2}=4(y-1)}\end{array}\right.$,得x2-4kx-4=0,由此利用根的判別式、韋達(dá)定理、弦長公式、點(diǎn)到直線的距離公式能求出△ANB面積的最小值.

解答 解:(1)設(shè)P(x,y),
∵動(dòng)點(diǎn)P到定點(diǎn)M(0,2)和它到定直線y=0的距離相等,
∴$\sqrt{(x-0)^{2}+(y-2)^{2}}$=|y|,
整理,得:x2+y2-4y+4=y2,
即x2=4(y-1).
∴曲線C的方程為x2=4(y-1).
(2)∵定點(diǎn)M(0,2),∴直線l的斜率不存在時(shí),直線l為x=0,不成立.
當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=kx+2,
聯(lián)立$\left\{\begin{array}{l}{y=kx+2}\\{{x}^{2}=4(y-1)}\end{array}\right.$,得x2-4kx-4=0,
△=16k2+16>0,設(shè)A(x1,y1),B(x2,y2),
則x1+x2=4k,x1x2=-4,
|AB|=$\sqrt{(1+{k}^{2})(16{k}^{2}+16)}$=4(1+k2),
∵點(diǎn)N是點(diǎn)M關(guān)于原點(diǎn)對稱的點(diǎn),∴N(0,-2),
點(diǎn)N到直線AB的距離d=$\frac{|0+2+2|}{\sqrt{1+{k}^{2}}}$=$\frac{4}{\sqrt{1+{k}^{2}}}$,
∴△ANB面積S△ANB=$\frac{1}{2}×|AB|×d$=$\frac{1}{2}×4(1+{k}^{2})×\frac{4}{\sqrt{1+{k}^{2}}}$=8$\sqrt{1+{k}^{2}}$≥8,
∴k=0時(shí),△ANB面積的最小值為8.

點(diǎn)評(píng) 本題考查曲線方程的求法,考查三角形面積的最小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意根的判別式、韋達(dá)定理、弦長公式、點(diǎn)到直線的距離公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=ax2-x+1在區(qū)間(-∞,2)內(nèi)是減函數(shù),則a的取值范圍是( 。
A.(0,$\frac{1}{4}$]B.[0,$\frac{1}{4}$]C.[2,+∞)D.(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)集合A={(x1,x2,x3,x4,x5)|xi∈{-1,0,1},i=1,2,3,4,5},那么集合A中滿足條件“1≤x1+x2+x3+x4+x5≤3”的元素個(gè)數(shù)為90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知Rt△ABC中,周長為定值L,求該三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等式x2+ax+1≥0對于一切x∈(2,3)成立,則a的取值范圍是( 。
A.a≤0B.a≥-$\frac{5}{2}$
C.-$\frac{5}{2}$≤a≤0D.-3≤a≤0
E.以上結(jié)論均不正確   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若“?x∈R,使x2-2ax+2<0”是假命題,則實(shí)數(shù)a的范圍$[-\sqrt{2},\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A={-2,-1,0,1,2},B={x|x2=1},則A∩B=( 。
A.{-1,0,1 }B.{-1,0}C.{-1,1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a1a100+a3a98=8,則log2a1+log2a2+…+log2a100=( 。
A.10B.50C.100D.1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)點(diǎn)P在曲線y=ex上,點(diǎn)Q在直線y=x上,則|PQ|的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案