【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線(xiàn)的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程;

(2)直線(xiàn)為參數(shù))與曲線(xiàn)交于兩點(diǎn),與軸交于,求.

【答案】((x1)2(y1)22. (|EA||EB|

【解析】試題分析:(1)由極坐標(biāo)和直角坐標(biāo)之間的轉(zhuǎn)換公式,即可求出結(jié)果;(2)將的參數(shù)方程代入曲線(xiàn)C的直角坐標(biāo)方程,化簡(jiǎn)得,點(diǎn)E對(duì)應(yīng)的參數(shù),設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為,則, ,再根據(jù)即可求出結(jié)果.

試題解析:(1)由,得直角坐標(biāo)方程為,即;

2)將的參數(shù)方程代入曲線(xiàn)C的直角坐標(biāo)方程,化簡(jiǎn)得,點(diǎn)E對(duì)應(yīng)的參數(shù),設(shè)點(diǎn)A,B對(duì)應(yīng)的參數(shù)分別為,則, ,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)命題的說(shuō)法正確的是(  )

A. x>1,則2x>1”的否命題為真命題

B. cosβ=1,則sinβ=0”的逆命題是真命題

C. 若平面向量a,b共線(xiàn),則a,b方向相同的逆否命題為假命題

D. 命題x>1,則xa的逆命題為真命題,則a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)有甲、乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為 .現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨(dú)立.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品A研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤(rùn)120萬(wàn)元;若新產(chǎn)品B研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤(rùn)100萬(wàn)元,求該企業(yè)可獲利潤(rùn)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,.

(1) 求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,點(diǎn)的中點(diǎn).

(1)求證: 平面;

(2)若平面 , , ,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若,時(shí),有成立

1判斷上的單調(diào)性,并證明;

2解不等式:

3對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某輪船公司的一艘輪船每小時(shí)花費(fèi)的燃料費(fèi)與輪船航行速度的平方成正比,比例系數(shù)為輪船的最大速度為15海里小時(shí)當(dāng)船速為10海里小時(shí),它的燃料費(fèi)是每小時(shí)96元,其余航行運(yùn)作費(fèi)用(不論速度如何)總計(jì)是每小時(shí)150元假定運(yùn)行過(guò)程中輪船以速度v勻速航行.

k的值;

求該輪船航行100海里的總費(fèi)用燃料費(fèi)航行運(yùn)作費(fèi)用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】π為圓周率,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)f(x)= 的單調(diào)區(qū)間;
(2)求e3 , 3e , eπ , πe , 3π , π3這6個(gè)數(shù)中的最大數(shù)和最小數(shù);
(3)將e3 , 3e , eπ , πe , 3π , π3這6個(gè)數(shù)按從小到大的順序排列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某學(xué)校準(zhǔn)備修建一個(gè)面積為2400平方米的矩形活動(dòng)場(chǎng)地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開(kāi),使得ABEF為矩形,EFCD為正方形,設(shè)米,已知圍墻(包括EF)的修建費(fèi)用均為每米500元,設(shè)圍墻(包括EF)的修建總費(fèi)用為y元.

(1)求出y關(guān)于x的函數(shù)解析式及x的取值范圍;

(2)當(dāng)x為何值時(shí),圍墻(包括EF)的修建總費(fèi)用y最?并求出y的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案