分析 (1)求出函數(shù)的導數(shù),根據(jù)f′(1)=f′(-1)=0,求出a,b的值,從而求出函數(shù)的解析式即可;
(2)問題轉(zhuǎn)化為|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|,根據(jù)函數(shù)的單調(diào)性求出f(x)的最值,從而求出c的最小值.
解答 解:(1)f′(x)=3ax2+2bx-3,
依題意,f′(1)=f′(-1)=0,
解得a=1,b=0,
∴f(x)=x3-3x;
(2)∵f(x)=x3-3x,
∴f′(x)=3x2-3=3(x+1)(x-1),
當-1<x<1時,f′(x)<0,
故f(x)在區(qū)間[-1,1]上為減函數(shù),
fmax(x)=f(-1)=2,
fmin(x)=f(1)=-2,
∵對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2,
都有|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4,
所以c≥4,
所以c的最小值為4.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及轉(zhuǎn)化思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $0<\frac{1}{a}<\frac{1}<1$ | B. | $0<\frac{1}<a<1$ | C. | $0<b<\frac{1}{a}<1$ | D. | $0<\frac{1}{a}<b<1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 2 | C. | 4 | D. | $\frac{17}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{c}$-$\frac{1}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0 | B. | ($\frac{1}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0 | C. | (-$\frac{1}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0 | D. | ($\frac{1}$+$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [3,+∞) | B. | [3,4)∪(4,+∞) | C. | (3,+∞) | D. | [3,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 充分必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com