3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn=-n2+(10+k)n+(k-1),則實(shí)數(shù)k=1,an=-2n+12,Sn的最大值為30.

分析 由等差數(shù)列前n項(xiàng)和的性質(zhì)可得k-1=0,求得k,代入前n項(xiàng)和后利用二次函數(shù)的最值求得Sn的最大值,再由前n項(xiàng)和求得首項(xiàng)和公差,則通項(xiàng)公式可求.

解答 解:∵Sn=-n2+(10+k)n+(k-1)為等差數(shù)列的前n項(xiàng)和,∴k-1=0,即k=1;
則Sn=-n2+11n,對稱軸方程為n=$\frac{11}{2}$,
∵n∈N*,∴當(dāng)n=5或6時(shí)Sn有最大值為30;
a1=S1=10,a2=S2-S1=18-10=8,
∴d=a2-a1=-2,則an=-2n+12.
故答案為:1,-2n+12,30.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=a2=1,an+2=an+1+an(n∈N).若存在正實(shí)數(shù)λ使得數(shù)列|an+1+λan|為等比數(shù)列,則λ=$\frac{-1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知 (1-2i)z=5(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)所在象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知an+1=2an+3(n∈N*),且a1=1,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求S20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在三棱柱ABC-A1B1C1中,AB=3,AA1=AC=4,AA1⊥平面ABC; AB⊥AC,
(1)求二面角A1-BC1-B1的余弦值;
(2)在線段BC1存在點(diǎn)D,使得AD⊥A1B,求$\frac{BD}{B{C}_{1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的中心的直線交雙曲線于點(diǎn)A,B,在雙曲線C上任取與點(diǎn)A,B不重合的點(diǎn)P,記直線PA,PB,AB的斜率分別為k1,k2,k,若k1k2>k恒成立,則離心率e的取值范圍為( 。
A.1<e<$\sqrt{2}$B.1<e≤$\sqrt{2}$C.e>$\sqrt{2}$D.e≥$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=-$\frac{1}{a}$+$\frac{2}{x}$,若f(x)+2x≥0在(0,+∞)上恒成立,則a的取值范圍是a<0或a≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸為4,離心率e=$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的方程;
(2)點(diǎn)P是圓x2+y2=b2上第一象限內(nèi)的任意一點(diǎn),過P作圓的切線交橢圓C于Q,R兩點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),求FQ+FR的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若一個(gè)幾何體的正視圖和側(cè)視圖是兩個(gè)全等的正方形,則這個(gè)幾何體的俯視圖不可能是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案