分析 (1)由當(dāng)n=1時(shí),a1=S1,當(dāng)n>1時(shí),an=Sn-Sn-1,可得數(shù)列{an}的通項(xiàng)公式;再由bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1),運(yùn)用等差數(shù)列的求和公式,可得{bn}的通項(xiàng)公式;
(2)求得Cn=$\frac{{a}_{n}•_{n}}{n}$=(n-1)•2n-1,運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理,即可得到所求和.
解答 解:(1)數(shù)列{an}的前n項(xiàng)和為Sn=2n-1,
當(dāng)n=1時(shí),a1=S1=2-1=1,
當(dāng)n>1時(shí),an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1;
即有數(shù)列{an}的通項(xiàng)公式為an=2n-1;
b1=0,bn+1-bn=2n(n∈N*),
可得bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=0+2+4+6+…+2(n-1)=$\frac{1}{2}$n•2(n-1)=n(n-1),
即有{bn}的通項(xiàng)公式為bn=n(n-1);
(2)Cn=$\frac{{a}_{n}•_{n}}{n}$=(n-1)•2n-1,
前n項(xiàng)和Tn=0+1•2+2•22+3•23+…+(n-1)•2n-1,
2Tn=0+1•22+2•23+3•24+…+(n-1)•2n,
兩式相減可得,-Tn=0+2+22+23+…+2n-1-(n-1)•2n
=$\frac{2(1-{2}^{n-1})}{1-2}$-(n-1)•2n,
化簡(jiǎn)可得,前n項(xiàng)和Tn=2+(n-2)•2n.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)和前n項(xiàng)和的關(guān)系,以及數(shù)列的恒等式的運(yùn)用,同時(shí)考查等差數(shù)列和等比數(shù)列的求和公式的運(yùn)用,考查數(shù)列的求和方法:錯(cuò)位相減法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | ||
C. | 等腰且鈍角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com