19.在△ABC中,角A,B,C的對(duì)邊分別是邊a,b,c,且滿足bcos C=(4a-c)cos B.則sinB=$\frac{\sqrt{15}}{4}$.

分析 根據(jù)正弦定理和兩角和的正弦公式可求cosB的值,進(jìn)而利用同角三角函數(shù)基本關(guān)系式即可計(jì)算得解.

解答 解:∵bcosC=(4a-c)cos B,
∴由正弦定理,得:(4sinA-sinC)cosB=sinBcosC,
即4sin Acos B=sinCcosB+sinBcosC=sin(C+B)=sin A.
在△ABC中,0<A<π,sin A>0,
所以cosB=$\frac{1}{4}$.
又因?yàn)?<B<π,
故sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{15}}{4}$.
故答案為:$\frac{\sqrt{15}}{4}$.

點(diǎn)評(píng) 本題考查正弦定理,兩角和的正弦公式,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了計(jì)算了和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法錯(cuò)誤的是(  )
①命題p:?x>2,2x-3>0的否定是?x0>2,2${\;}^{{x}_{0}}$-3≤0;
②已知復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,若(z+2$\overline{z}$)(1-2i)=3-4i(i為虛數(shù)單位),則在復(fù)平面內(nèi),復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)位于第四象限;
③已知x.y∈R,且2x+3y>2-y+3-x,則x-y<0;
④若$\overrightarrow{a}$=(λ,-2),$\overrightarrow$=(-3,5),且$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角,則λ的取值范圍是λ∈(-$\frac{10}{3}$,+∞);
⑤設(shè)函數(shù)f(x)=$\sqrt{3}$sin$\frac{πx}{m}$,若存在f(x)的極值點(diǎn)x0滿足x02+[f(x0)]2<m2,則m的取值范圍是(-∞,-2)∪(2,∞).
A.①②B.②③C.③④D.④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知圓的極坐標(biāo)方程為ρ=2cosθ-2sinθ,則圓的半徑為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是互相垂直的單位向量,若$\overrightarrow{{e}_{1}}$+$\sqrt{3}$$\overrightarrow{{e}_{2}}$與$λ\overrightarrow{e_1}-\overrightarrow{e_2}$的夾角為60°,則實(shí)數(shù)λ的值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓C的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,$c=\frac{{\sqrt{3}}}{2}a$,且C上一點(diǎn)到兩焦點(diǎn)的距離之和為12,則橢圓C的方程為$\frac{x^2}{36}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知兩點(diǎn)A(-2,0),B(0,1),點(diǎn)P是圓(x-1)2+y2=1上任意一點(diǎn),則△PAB面積的最大值是$\frac{3+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=6sinθ.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)P(1,3),若直線l與曲線C交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx+a(x-1)2,其中a>0.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)討論函數(shù)f(x)的單調(diào)性;
(3)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證:$\frac{1}{2}-ln2<f({x_2})<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=ex-1+x-1的零點(diǎn)所在的大致區(qū)間是( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,e)

查看答案和解析>>

同步練習(xí)冊(cè)答案