15.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=t-1\\ y=2t+1\end{array}\right.$(t為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)分別求出曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P在曲線C2上,且P到曲線C1的距離為2,求滿足這樣條件的點(diǎn)P的個數(shù).

分析 (I)用分別x,y表示出t,列出方程消去t,得到C1的普通方程,由ρ=2cosθ得ρ2=2ρcosθ,根據(jù)極坐標(biāo)與直角坐標(biāo)的對應(yīng)關(guān)系得出C2的直角坐標(biāo)方程;
(II)計算C2的圓心到直線的距離,判斷直線C1與圓C2的位置關(guān)系,得出答案.

解答 解:(Ⅰ)∵$\left\{\begin{array}{l}x=t-1\\ y=2t+1\end{array}\right.$(t為參數(shù)),∴$\left\{\begin{array}{l}{t=x+1}\\{t=\frac{y-1}{2}}\end{array}\right.$,
∴曲線C1的普通方程為x+1=$\frac{y-1}{2}$,即2x-y+3=0.
由ρ=2cosθ得ρ2=2ρcosθ,
∴曲線C2的直角坐標(biāo)方程為:x2+y2=2x,即:(x-1)2+y2=1.
(Ⅱ)圓心C2(1,0)到直線C1的距離為$d=\frac{{|{2-0+3}|}}{{\sqrt{1+4}}}=\sqrt{5}$,圓C2半徑為1,
∴C2上的點(diǎn)到C1的最短距離為$\sqrt{5}-1$,最大距離為$\sqrt{5}+1$.
∵$\sqrt{5}-1<2<\sqrt{5}+1$,
所以圓C2上到直線C1的距離為2的點(diǎn)有兩個.

點(diǎn)評 本題考查了參數(shù)方程,極坐標(biāo)方程與普通方程的轉(zhuǎn)化,直線與圓的位置關(guān)系判斷,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)列{an}的通項(xiàng)公式為an=2n-1,則前n項(xiàng)和Sn=( 。
A.n2-1B.n2C.n2+1D.(n+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l:y=x+n與橢圓G:(3-m)x2+my2=m(3-m)交于兩點(diǎn)B,C.
(Ⅰ)若橢圓G的焦點(diǎn)在y軸上,求m的取值范圍;
(Ⅱ)若A(0,1)在橢圓上,且以BC為直徑的圓過點(diǎn)A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在直三棱柱中,∠ACB=90°,AC=BC=1,側(cè)棱AA1=$\sqrt{2}$,M為A1B1的中點(diǎn),則AM與平面AA1C1C所成角的正切值為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點(diǎn)A(1,2)示拋物線y2=4x上一點(diǎn),過點(diǎn)A作兩條直線AD,AE分別交拋物線于點(diǎn)D,E,若AD,AE的斜率分別為kAD,KAE,且kAD+kAE=0,則直線DE的斜率為(  )
A.1B.-$\frac{1}{2}$C.-1D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線M的焦點(diǎn)F1,F(xiàn)2在x軸上,直線$\sqrt{7}x+3y=0$是雙曲線M的一條漸近線,點(diǎn)P在雙曲線M上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,如果拋物線y2=16x的準(zhǔn)線經(jīng)過雙曲線M的一個焦點(diǎn),那么$|\overrightarrow{P{F_1}}|•|\overrightarrow{P{F_2}}|$=( 。
A.21B.14C.7D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線C:y2=4x,直線l:$y=\frac{1}{2}x+b$與C交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)當(dāng)直線l過拋物線C的焦點(diǎn)F時,求|AB|;
(2)是否存在直線l使得直線OA⊥OB?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.等比數(shù)列{an}中,已知a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a1,a2分別為等差數(shù)列{bn}的第1項(xiàng)和第2項(xiàng),數(shù)列{bn}的前n項(xiàng)和為Sn,求證:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知θ∈($\frac{π}{2}$,π),sinθ+cosθ=-$\frac{{\sqrt{10}}}{5}$,則tan(θ-$\frac{π}{4}$)的值為( 。
A.$\frac{1}{2}$B.2C.$-\frac{1}{2}$D.-2

查看答案和解析>>

同步練習(xí)冊答案