3.已知圓C的方程為(x-1)2+(y-2)2=4.
(Ⅰ)求過點(diǎn)M(3,1)的圓C的切線方程;
(Ⅱ)若直線ax-y+4=0與圓C交于A、B兩點(diǎn),且|AB|=2$\sqrt{3}$,求實(shí)數(shù)a的值.

分析 (Ⅰ)由圓的方程找出圓心坐標(biāo)與半徑,分兩種情況考慮:若切線方程斜率不存在,直線x=3滿足題意;若斜率存在,設(shè)出切線方程,根據(jù)直線與圓相切時(shí)圓心到切線的距離d=r,求出k的值,綜上即可確定出滿足題意的切線方程;
(Ⅱ)求出圓心到直線的距離為1,利用點(diǎn)到直線的距離公式建立方程,即可得出結(jié)論.

解答 解:(Ⅰ)由圓的方程得到圓心(1,2),半徑r=2,
當(dāng)直線斜率不存在時(shí),方程x=3與圓相切;
當(dāng)直線斜率存在時(shí),設(shè)方程為y-1=k(x-3),即kx-y+1-3k=0,
由題意得:$\frac{|k-2+1-3k|}{\sqrt{{k}^{2}+1}}$=2,
解得:k=$\frac{3}{4}$,
∴方程為y-1=$\frac{3}{4}$(x-3),即3x-4y-5=0,
則過點(diǎn)M的切線方程為x=3或3x-4y-5=0;
(Ⅱ)∵|AB|=2$\sqrt{3}$,
∴圓心到直線的距離為1,
∴$\frac{|a-2+4|}{\sqrt{{a}^{2}+1}}$=1,∴a=-$\frac{3}{4}$.

點(diǎn)評(píng) 此題考查了直線與圓相交的性質(zhì),涉及的知識(shí)有:點(diǎn)到直線的距離公式,圓的標(biāo)準(zhǔn)方程,利用了分類討論的思想,熟練掌握定理及公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若A,B互為對(duì)立事件,其概率分別為P(A)=$\frac{4}{x}$,P(B)=$\frac{1}{y}$,且x>0,y>0,則x+y的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|2x-x2≤0},B={x|$\frac{x-2}{x-1}$≤0},則(∁RB)∩A=( 。
A.(-∞,0]∪[2,+∞)B.[0,1]C.(-∞,0]∪(2,+∞)D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.l1,l2表示空間中的兩條不同直線,命題p:“l(fā)1,l2是異面直線”;q:“l(fā)1,l2不相交”,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)復(fù)數(shù)z=-1-i,z的共軛復(fù)數(shù)為$\overline z$,則$(1-z)•\overline z$=-3+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=$\sqrt{3}$,BC=4.
(1)求證:BD⊥PC;
(2)若PD=4,設(shè)點(diǎn)E在棱PC上,$\overrightarrow{PE}$=$\frac{1}{4}$$\overrightarrow{PC}$,求三棱錐E-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(2x+1)=3x-2,且f(a)=4,則a的值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=4,BC=3,AD=5,PA=4,∠DAB=∠ABC=90°,E是CD的中點(diǎn).
(1)求異面直線BC與PD所成角的正切值;
(2)求證:CD⊥PE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3-3x2+ax+2,曲線y=f(x)在點(diǎn)(0,2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為-2.
(Ⅰ)求a的值;
(Ⅱ)求曲線y=f(x)與直線y=x-2交點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案