14.(1)解不等式:|2x-1|-|x|<1;
(2)設(shè)f(x)=x2-x+1,實數(shù)a滿足|x-a|<1,求證:|f(x)-f(a)|<2(|a+1|)

分析 (1)根據(jù)題意,對x分3種情況討論:①當(dāng)x<0時,②當(dāng)0≤x<$\frac{1}{2}$時,③當(dāng)x≥$\frac{1}{2}$時;在各種情況下.去掉絕對值,化為整式不等式,解可得三個解集,進而將這三個解集取并集即得所求.
(2)根據(jù)|f(x)-f(a)|=|x2-x-a2+a|=|x-a|•|x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1,證得結(jié)果.

解答 (1)解:根據(jù)題意,對x分3種情況討論:
①當(dāng)x<0時,原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,
此時,不等式的解集為∅.
②當(dāng)0≤x<$\frac{1}{2}$時,原不等式可化為-2x+1<x+1,解得x>0,又0≤x<$\frac{1}{2}$,
此時其解集為{x|0<x<$\frac{1}{2}$}.
③當(dāng)x≥$\frac{1}{2}$時,原不等式化為2x-1<x+1,解得$\frac{1}{2}$≤x<2,
又由x≥$\frac{1}{2}$,此時其解集為{x|$\frac{1}{2}$≤x<2},
綜上,原不等式的解集為{x|0<x<2}.
(2)證明:∵f(x)=x2-x+1,實數(shù)a滿足|x-a|<1,
故|f(x)-f(a)|=|x2-x-a2+a|=|x-a|•|x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1).
∴|f(x)-f(a)|<2(|a|+1).

點評 本題主要考查絕對值不等式的解法,絕對值不等式的性質(zhì),用放縮法證明不等式,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點. 將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(Ⅰ)求證:AD⊥BM;
(Ⅱ)求直線CM與平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}中,a2=5,a4=11,記數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Sn,若對任意的n∈N+,都有S2n+1-Sn≤$\frac{m}{20}$成立,則整數(shù)m的最小值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB
(1)求證:EA⊥平面EBC
(2)求二面角C-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|x+6|-|x-m|)(m∈R)
(Ⅰ)當(dāng)m=3時,求不等式f(x)≥5的解集;
(Ⅱ)若不等式f(x)≤7對任意實數(shù)x恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x-a|+|x-2a|
(Ⅰ)當(dāng)a=1時,求不等式f(x)>2的解集;
(Ⅱ)若對任意x∈R,不等式f(x)≥a2-3a-3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知b=5,B=$\frac{π}{4}$,tanA=2,則sinA=$\frac{2\sqrt{5}}{5}$,邊a=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.-495°與下列哪個角的終邊相同( 。
A.135°B.45°C.225°D.-225°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,AB=8cm,BC=7cm,AC=5cm,內(nèi)心為I,則AI的長度為$2\sqrt{3}$cm.

查看答案和解析>>

同步練習(xí)冊答案