3.“m=-3”是“直線l1:mx+(1-m)y-3=0與直線l2:(m-1)x+(2m+3)y-2=0相互垂直”的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 對(duì)m分類討論,利用兩條直線相互垂直的充要條件即可得出.

解答 解:分類討論:當(dāng)m=1時(shí),直線l1的斜率不存在,直線l2的斜率為0,此時(shí)兩條直線相互垂直.
當(dāng)m=-$\frac{3}{2}$時(shí),直線l1的斜率存在為-$\frac{3}{5}$,直線l2的斜率不存在,此時(shí)兩條直線不垂直,舍去.
當(dāng)m≠-$\frac{3}{2}$,1時(shí),由兩條直線相互垂直,可得:$-\frac{m}{1-m}$×($-\frac{m-1}{2m+3}$)=-1,解得m=-3.
綜上可得:m=-3或1時(shí)兩條直線相互垂直,
因此:“m=-3”是“直線l1:mx+(1-m)y-3=0與直線l2:(m-1)x+(2m+3)y-2=0相互垂直”的充分不必要條件.
故選:B.

點(diǎn)評(píng) 本題考查了直線相互垂直與斜率之間的關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知x,y均為正數(shù),θ∈(${\frac{π}{4}$,$\frac{π}{2}}$),且滿足$\frac{cosθ}{x}$=$\frac{sinθ}{y}$,$\frac{{{{sin}^2}θ}}{x^2}$+$\frac{{{{cos}^2}θ}}{y^2}$=$\frac{10}{{3({x^2}+{y^2})}}$,則$\frac{{(x+y{)^2}}}{{{x^2}+{y^2}}}$的值為$\frac{{1+\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=$\root{3}{x-1}$+log2(x2-1)的定義域?yàn)椋ā 。?table class="qanwser">A.(1,+∞)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)∪[1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=(x-k)ex
(Ⅰ)當(dāng)k=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若對(duì)于任意的x>0時(shí)均有(x-a+2)(x2-ax-2)≥0,則實(shí)數(shù)a的值為( 。
A.1B.2C.$\sqrt{2}$-1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則下列說(shuō)法中,所有正確說(shuō)法的序號(hào)是①②
①f(x)的圖象關(guān)于直線x=$\frac{7π}{12}$對(duì)稱
②f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z
③方程f(x)=1在[-$\frac{π}{2}$,0]上有兩個(gè)不相等的實(shí)根
④函數(shù)f(x)的圖象是由函數(shù)y=2sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$個(gè)單位得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.命題p:|x+2|>2,命題q:x2-3x+2<0,則¬q是¬p成立的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.$\frac{sin15°-cos15°}{sin15°+cos15°}$=( 。
A.$-\sqrt{3}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.求由曲線y=(x+2)2與x軸及直線y=4-x所圍成的平面圖形的面積$\frac{32}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案