分析 (1)由題意可得2×$\frac{π}{8}$+φ=kπ+$\frac{π}{2}$,k∈z,由此求得φ 的值.
(2)由條件利用正弦函數(shù)的增區(qū)間可得f(x)的增區(qū)間,結(jié)合x(chóng)∈[0,π],進(jìn)一步確定f(x)的增區(qū)間.
解答 解:(1)由函數(shù)f(x)=sin(2x+φ)(-π<φ<0)的一條對(duì)稱軸是x=$\frac{π}{8}$.
可得2×$\frac{π}{8}$+φ=kπ+$\frac{π}{2}$,k∈z,∴φ=kπ+$\frac{π}{4}$,k∈z,又-π<φ<0,∴φ=-$\frac{3π}{4}$.
(2)對(duì)于函數(shù)$f(x)=sin(2x-\frac{3π}{4})$,令$\frac{π}{2}+2kπ≤2x-\frac{3π}{4}≤\frac{3π}{2}+2kπ$,求得 $\frac{5π}{8}+kπ≤x≤\frac{9π}{8}+kπ,k∈Z$,
可得函數(shù)的增區(qū)間為[kπ+$\frac{5π}{8}$,kπ+$\frac{9π}{8}$],k∈z.
再根據(jù)x∈[0,π],可得增區(qū)間為[$\frac{5π}{8}$,π]、[0,$\frac{π}{8}$].
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象的對(duì)稱性,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
“滿意”的人數(shù) | “不滿意”的人數(shù) | 合計(jì) | |
女 | 16 | ||
男 | 14 | ||
合計(jì) | 40 |
P(k2≥k) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x3 | B. | y=-x3+1 | C. | y=|x|+1 | D. | y=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 | B. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | ||
C. | 向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 | D. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com