16.若直線l在x軸的截距與在y軸的截距都是負數(shù),則( 。
A.l的傾斜角為銳角且不過第一象限B.l的傾斜角為鈍角且不過第一象限
C.l的傾斜角為銳角且不過第四象限D.l的傾斜角為鈍角且不過第四象限

分析 根據題意,畫出圖形,結合圖形,利用傾斜角與截距的定義即可得出結論.

解答 解:直線l在x軸的截距與在y軸的截距都是負數(shù),如圖所示,
則直線l的傾斜角為鈍角,且不過第一象限.

故選:B.

點評 本題考查了直線的傾斜角與截距的定義與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)$f(x)={log_{\frac{1}{2}}}({x^2}-2x-3)$的單調減區(qū)間是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知冪函數(shù)f(x)=xa的圖象經過點$(\sqrt{2},2)$,則f(1-x)的單調增區(qū)間為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知四面體P-ABC,其中△ABC是邊長為6的等邊三角形,PA⊥平面ABC,PA=4,則四面體P-ABC外接球的表面積為64π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖1所示,拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0),與y軸交與點C(0,-3).
(1)求拋物線的解析式;
(2)在BC下方的拋物線上是否存在點E,使△EBC的面積最大,如果存在,請求出最大面積及點E的坐標;如果不存在,請說明理由.
(3)如圖2所示,過點C作CP∥AB交拋物線與點P,在拋物線上是否存在點M,將線段PM繞點P旋轉90°后,點M恰好落在x軸上的點M1處,如果存在,請求出點M的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在平面直角坐標系xOy中,向量$\overrightarrow{a}$,$\overrightarrow$的位置如圖所示,已知|$\overrightarrow{a}$|=|$\overrightarrow{OA}$|=4,|$\overrightarrow$|=|$\overrightarrow{AB}$|=3,且∠AOx=45°,∠OAB=105°,請分別求出向量$\overrightarrow{a}$,$\overrightarrow$的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{3}$,$\frac{a}{\sqrt{{a}^{2}+^{2}}}=\frac{\sqrt{3}}{3}$.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設直線1是圓O:x2+y2=2上動點P(x0,y0)(x0y0≠0)處的切線,l與雙曲線C交于不同的兩點A,B,求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.計算
(1)($\root{3}{2}$×$\sqrt{3}$)6+(2×$\sqrt{2}$)${\;}^{\frac{4}{3}}$-4×($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25;
(2)lg4+lg9+2$\sqrt{(lg6)^{2}-2lg6+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設α是第一象限的角,作α的正弦線、余弦線和正切線,并證明下列各式:
(1)sin2α+cos2α=1;
(2)tanα=$\frac{sinα}{cosα}$.

查看答案和解析>>

同步練習冊答案