1.服從二項分布∮~B(n,p),則$\frac{{D}^{2}∮}{(E∮)^{2}}$=(1-p)2

分析 隨機(jī)變量服從二項分布,其E(∮)=np,D(∮)=np(1-p),即可求出則$\frac{{D}^{2}∮}{(E∮)^{2}}$的值

解答 解:∵隨機(jī)變量∮服從二項分布∮~B(n,p),
∴E(∮)=np,D(∮)=np(1-p),
∴$\frac{{D}^{2}∮}{(E∮)^{2}}$=(1-p)2
故答案為(1-p)2

點評 本題考查二項分布,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知實數(shù)a,b滿足:a≥$\frac{1}{2}$,b∈R,且a+|b|≤1,則$\frac{1}{2a}$+b的取值范圍是[$\sqrt{2}$-1,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知復(fù)數(shù)z滿足z(1-i)=-1-i,則|z+1|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線2x2-y2=2,過點P(2,1)的直線l與曲線相交于A,B兩點.
(1)若直線AB平行于y軸,求線段AB的長;
(2)若直線l繞P點轉(zhuǎn)動,當(dāng)點P為線段AB的中點時,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若拋物線y2=6x的準(zhǔn)線被圓心為(-2,1)的圓截得的弦長等于$\sqrt{3}$,則該圓的半徑為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若向量$\overrightarrow{OA}$=(1,-1),|$\overrightarrow{OA}$=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-1,則向量$\overrightarrow{OA}$與$\overrightarrow{OB}$-$\overrightarrow{OA}$夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)P(x,y)滿足$\left\{\begin{array}{l}{x-2y≥0}\\{x+2y≥0}\end{array}\right.$,且P點到兩直線x-2y=0,x+2y=0距離之和不大于$\sqrt{5}$,則x-y的最大值為( 。
A.$\frac{17}{3}$B.$\frac{15}{4}$C.$\frac{25}{4}$D.$\frac{11}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合M={x|x2≤4},N={x|log2x≤1},則M∩N=( 。
A.[-2,2]B.{2}C.(0,2]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=sin(π+$\frac{x}{2}$)cos(3$π-\frac{x}{2}$)-$\frac{\sqrt{3}}{2}$cosx-1,x∈R,求該函數(shù)的最小正周期,最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案