設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,且acosB=3,bsinA=4.
(Ⅰ)求邊長(zhǎng)a;
(Ⅱ)若△ABC的面積S=10,求cosC的值.
考點(diǎn):余弦定理的應(yīng)用
專(zhuān)題:解三角形
分析:(I)由圖及已知作CD垂直于AB,在直角三角形BDC中求BC的長(zhǎng).
(II)由面積公式解出邊長(zhǎng)c,再由余弦定理解出邊長(zhǎng)b,利用等腰三角形求解cosC的值.
解答: 解:(I)過(guò)C作CD⊥AB于D,則由CD=bsinA=4,BD=acosB=3,
∴在Rt△BCD中,a=BC=
BD2+CD2 
=5,
(II)由面積公式得S=
1
2
×AB×CD=
1
2
×AB×4=10得AB=c=5,
又acosB=3,得cosB=
3
5
,
由余弦定理得:b=
a2+c2-2accosB
=
25+25-2×25×
3
5
=2
5

∵三角形ABC是等腰三角形B為頂角,
∴cosC=
5
5
點(diǎn)評(píng):本題主要考查了射影定理及余弦定理.三角形的面積公式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程
4-x2
=k(x-2)+3有兩個(gè)不等實(shí)根,則k的取值范圍為( 。
A、(
5
12
,
3
4
]
B、[
3
4
,+∞)
C、(-∞,
5
12
]
D、(
5
12
,
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題:
①向量
AB
BA
是兩平行向量.
②若
a
,
b
都是單位向量,則
a
=
b

③若
AB
=
DC
,則A、B、C、D四點(diǎn)構(gòu)成平行四邊形.
④若a∥b∥c,則a∥c.
其中正確命題的個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
sin(x+φ),0<φ<
π
2
,且f(0)=1.
(1)求f(x)的解析式;
(2)已知f(α)=
4
5
,
π
2
<α<π,求sinα-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
1
3x+
3

(1)求f(0)+f(1),f(-1)+f(2),f(-2)+f(3);
(2)由(1)歸納出一般結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ex-1+
a
x
(a∈R).
(1)若函數(shù)f(x)在x=1處有極值,且函數(shù)g(x)=f(x)+b在(0,+∞)上有零點(diǎn),求b的最大值;
(2)若f(x)在(1,2)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+ax2-a2x+2
(1)若a≠0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式2xlnx≤f′(x)+a2+1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a(x-1)
x2
,其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=axlnx+b(a,b∈R)的圖象過(guò)點(diǎn)(1,0)且在此點(diǎn)處的切線斜率為1.
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)若g(x)=
1
2
x2-mx+
3
2
,存在x0∈(0,+∞)使得f(x0)≥g(x0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案