已知i為虛數(shù)單位,在復(fù)平面內(nèi)復(fù)數(shù)
2i
1+i
對應(yīng)點的坐標(biāo)為
 
考點:復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的幾何意義,即可得到結(jié)論.
解答: 解:
2i
1+i
=
2i(1-i)
(1+i)(1-i)
=
2i-2i2
2
=1+i

則對應(yīng)的點的坐標(biāo)為(1,1),
故答案為:(1,1)
點評:本題主要考查復(fù)數(shù)的幾何意義,利用復(fù)數(shù)的運算法則是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

車間有11名工人,其中5名男工是鉗工,4名女工是車工,另外2名老師傅既能當(dāng)車工,又能當(dāng)鉗工,現(xiàn)在要在這11名工人里選派4名鉗工、4名車工修理一臺機床,問有多少種選派方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos(x-
π
12
),x∈R.
(Ⅰ)求f(-
π
6
)的值;
(Ⅱ)若cos(θ+
π
3
)=
3
5
,θ∈(-
π
2
,
π
2
),求f(2θ+
π
12
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)和橢圓C2
x2
2
+y2
=1,離心率相同,且點(
2
,1)在橢圓C1上.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)P為橢圓C2上一點,過點P作直線交橢圓C1于A、C兩點,且P恰為弦AC的中點.求證:無論點P怎樣變化,△AOC的面積為常數(shù),并求出此常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ln(x+1)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足
3x-y-6≤0
x-y+2≥0
x+y≥3
,若目標(biāo)函數(shù)z=ax+y(a>0)的最大值為14,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,y>0,x+3y=1,則
1
x
+
1
3y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合D={x||x-1|≤1},則函數(shù)f(x)=
1
x+1
(x∈D)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2(2x-
π
4
)的最小正周期是
 

查看答案和解析>>

同步練習(xí)冊答案