分析 (Ⅰ)將a=0代入不等式,得到關于x的不等式組,解出即可;
(Ⅱ)通過討論a的范圍,求出f(x)的分段函數,從而求出函數的單調區(qū)間;
(Ⅲ)先求出函數的值域,結合換元法以及a的范圍,求出方程的解即可.
解答 解:(Ⅰ)當a=0時,不等式f(x)<2,即:${e^x}+|{\frac{1}{e^x}-1}|<2$,
即$|{\frac{1}{e^x}-1}|<2-{e^x}$,因此$\left\{\begin{array}{l}\frac{1}{e^x}-1>{e^x}-2\\ \frac{1}{e^x}-1<2-{e^x}\end{array}\right.$…(2分)
得$\frac{{3-\sqrt{5}}}{2}<{e^x}<\frac{{1+\sqrt{5}}}{2}$,所以$ln\frac{{3-\sqrt{5}}}{2}<x<ln\frac{{1+\sqrt{5}}}{2}$,
所以原不等式的解集為$(ln\frac{{3-\sqrt{5}}}{2},ln\frac{{1+\sqrt{5}}}{2})$.…(4分)
(Ⅱ)①當a≤0時,$f(x)={e^x}-a+|{\frac{1}{e^x}-1}|=\left\{\begin{array}{l}{e^x}-\frac{1}{e^x}-a+1,x≥0\\{e^x}+\frac{1}{e^x}-a-1,x<0.\end{array}\right.$
因為x>0時,$f'(x)={e^x}+\frac{1}{e^x}>0$,x<0時,$f(x)={e^x}-\frac{1}{e^x}<0$,
故f(x)在區(qū)間(-∞,0)上單調遞減,在區(qū)間(0,+∞)上單調遞增;…(5分)
②當0<a<1時,$f(x)=\left\{\begin{array}{l}{e^x}-\frac{1}{e^x}-a+1,x≥0\\{e^x}+\frac{1}{e^x}-a-1,lna<x<0\\-{e^x}+\frac{1}{e^x}+a-1,x≤lna.\end{array}\right.$,
仿①得f(x)在(-∞,lna)和(lna,0)上單調遞減,在(0,+∞)上單調遞增,
即f(x)在區(qū)間(-∞,0)上單調遞減,在區(qū)間(0,+∞)上單調遞增;(6分)
③當a=1時,$f(x)=\left\{\begin{array}{l}{e^x}-\frac{1}{e^x},x≥0\\ \frac{1}{e^x}-{e^x},x<0\end{array}\right.$
易得f(x)在區(qū)間(-∞,0)上單調遞減,在區(qū)間(0,+∞)上單調遞增; …(7分)
④當a>1時,$f(x)=\left\{\begin{array}{l}{e^x}-\frac{1}{e^x}-a+1,x≥lna\\-{e^x}-\frac{1}{e^x}+a+1,0<x<lna\\-{e^x}+\frac{1}{e^x}+a-1,x≤0.\end{array}\right.$
同理得f(x)在區(qū)間(-∞,lna)上單調遞減,在區(qū)間(lna,+∞)上單調遞增.…(8分)
綜上所述,
當a≤1時,f(x)在區(qū)間(-∞,0)上單調遞減,在區(qū)間(0,+∞)上單調遞增;
當a>1時,f(x)在區(qū)間(-∞,lna)上單調遞減,在區(qū)間(lna,+∞)上單調遞增.…(10分)
(Ⅲ)由(Ⅱ)知:當$a≥\frac{4}{3}$時,因為$f(lna)={e^{lna}}-\frac{1}{{{e^{lna}}}}-a+1=1-\frac{1}{a}$,
又x→+∞時,${e^x}-\frac{1}{e^x}-a+1→+∞$,
所以f(x)的值域為$[1-\frac{1}{a},+∞)$,且$1>1-\frac{1}{a}≥\frac{1}{4}$(等號僅當$a=\frac{4}{3}$時。12分)
令$f(x)=u,f(u)=\frac{1}{4}$,
當$a>\frac{4}{3}$時,$f(u)>\frac{1}{4}$,所以$f(u)=\frac{1}{4}$不成立,原方程無解;…(13分)
當$a=\frac{4}{3}$時,由$f(u)=\frac{1}{4}$得$u=ln\frac{4}{3}$,因為$ln{(\frac{4}{3})^4}=ln\frac{256}{81}>ln3>1$,所以$ln\frac{4}{3}>\frac{1}{4}$,
所以$f(x)=ln\frac{4}{3}$有兩個不相等的實數根,故原方程有兩個不同的實數解.…(15分)
綜上所述,當$a>\frac{4}{3}$時,原方程無解;當$a=\frac{4}{3}$時,原方程有兩個不同的實數解.(16分).
點評 本題考查了不等式的性質,考查函數的單調性以及方程的解的問題,是一道綜合題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3個 | B. | 2個 | C. | 1個 | D. | 0個 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{5}$ | C. | ±$\sqrt{5}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com