分析 (1)設(shè)“在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)”為事件A,利用互斥事件概率計(jì)算公式能求出在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)的概率.
(2)設(shè)“在1次摸獎(jiǎng)中,獲獎(jiǎng)”為事件B,先求出P(B),由題意可知X的所有可能取值為0,1,2.分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
解答 解:(1)設(shè)“在1次摸獎(jiǎng)中,獲得二等獎(jiǎng)”為事件A,
則P(A)=$\frac{{C}_{3}^{2}{C}_{2}^{1}{C}_{2}^{1}+{C}_{3}^{1}{C}_{3}^{1}{C}_{2}^{2}}{{C}_{6}^{2}{C}_{4}^{2}}$=$\frac{7}{30}$.…(4分)
(2)設(shè)“在1次摸獎(jiǎng)中,獲獎(jiǎng)”為事件B,
則獲得一等獎(jiǎng)的概率為${P}_{1}=\frac{{C}_{3}^{2}{C}_{2}^{2}}{{C}_{6}^{2}{C}_{4}^{2}}$=$\frac{1}{30}$,
獲得三等獎(jiǎng)的概率為P3=$\frac{2{C}_{3}^{2}{C}_{2}^{2}+{C}_{3}^{1}{C}_{3}^{1}{C}_{2}^{1}{C}_{2}^{1}}{{C}_{6}^{2}{C}_{4}^{2}}$=$\frac{7}{15}$,
所以P(B)=$\frac{1}{30}+\frac{7}{30}+\frac{7}{15}$=$\frac{11}{15}$.…(8分)
由題意可知X的所有可能取值為0,1,2.
P(X=0)=(1-$\frac{11}{15}$)2=$\frac{16}{225}$,
P(X=1)=${C}_{2}^{1}×\frac{11}{15}×(1-\frac{11}{15})$=$\frac{88}{225}$,
P(X=2)=($\frac{11}{15}$)2=$\frac{121}{225}$.
所以X的分布列是
X | 0 | 1 | 2 |
P | $\frac{16}{225}$ | $\frac{88}{225}$ | $\frac{121}{225}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意互斥事件概率計(jì)算公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\sqrt{3}$ | C. | 0 | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com