8.定義在R上的函數(shù)f(x)滿足:f(x)=$\frac{1}{2}$f(x-2π),且當(dāng)x∈[0,2π)時(shí),f(x)=8sinx,則函數(shù)g(x)=f(x)-lgx的零點(diǎn)個(gè)數(shù)是( 。
A.5B.6C.7D.8

分析 求出函數(shù)的解析式,利用函數(shù)的圖象以及函數(shù)值判斷即可.

解答 解:定義在R上的函數(shù)f(x)滿足:f(x)=$\frac{1}{2}$f(x-2π),且當(dāng)x∈[0,2π)時(shí),f(x)=8sinx,
當(dāng)x∈[2π,4π)時(shí),f(x)=4sinx,
當(dāng)x∈[4π,6π)時(shí),f(x)=2sinx,
當(dāng)x∈[6π,8π)時(shí),f(x)=sinx,
在坐標(biāo)系中畫(huà)出兩個(gè)函數(shù)y=f(x)與y=lgx的圖象如圖:

由圖象可知兩圖象有5個(gè)交點(diǎn),故函數(shù)g(x)=f(x)-lgx有5個(gè)零點(diǎn),
故選A.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{{{{({x+1})}^2}+ln({\sqrt{1+9{x^2}}-3x})cosx}}{{{x^2}+1}}$,且f(2017)=2016,則f(-2017)=( 。
A.-2014B.-2015C.-2016D.-2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=sinθ+2\end{array}$(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為sinθ+cosθ=$\frac{1}{ρ}$.
(1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)求直線l被圓C所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,多面體ABCDE中,AB=AC,平面BCDE⊥平面ABC,BE∥CD,CD⊥BC,BE=1,BC=2,CD=3,M為BC的中點(diǎn).
(Ⅰ)若N是棱AE上的動(dòng)點(diǎn),求證:DE⊥MN;
(Ⅱ)若平面ADE與平面ABC所成銳二面角為60°,求棱AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知圓${C_1}:{(x+6)^2}+{(y-5)^2}=4$,圓${C_2}:{(x-2)^2}+{(y-1)^2}=1,M,N$分別為圓C1和C2上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則|PM|+|PN|的最小值為( 。
A.7B.8C.10D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}xlnx-3x,x>0\\{x^2}+\frac{3}{2}x,x≤0\end{array}\right.$的圖象上有且只有四個(gè)不同的點(diǎn)關(guān)于直線y=-1的對(duì)稱點(diǎn)在直線y=kx-1上,則實(shí)數(shù)k的取值范圍是( 。
A.$({\frac{2}{7},1})$B.$({\frac{1}{3},3})$C.$({\frac{1}{2},2})$D.$({2,\frac{7}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=-2x5-x3-7x+2,若f(a2)+f(a-2)>4,則實(shí)數(shù)a的取值范圍( 。
A.(-∞,1)B.(-∞,3)C.(-1,2)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=$\frac{2sinx}{{1+\frac{1}{x^2}}}(x∈[-\frac{3π}{4},0)∪(0,\frac{3π}{4}])$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a、b、c,且$\frac{c-b}{{\sqrt{2}c-a}}=\frac{sinA}{sinB+sinC}$,則角B=$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案