任給x的值,計算函數(shù)y=
1(x<1)
2(x=1)
3(x>1)
中y值的程序框圖,如圖,其中,①、②、③分別是(  )
A、x<1、x>1、y=3
B、x=1、x>1、y=3
C、x<1、x=1、y=3
D、x<1、x>1、y=3
考點:選擇結構
專題:算法和程序框圖
分析:根據(jù)題意,執(zhí)行程序框圖,對比已知和輸出的結果即可.
解答: 解:根據(jù)題意,執(zhí)行程序框圖,有
首先注意到“是”時,“y=1”則①應該是“x<1”;
再看②,由于“否”時,y=2,會想到②應該是“x>1”;
當“x>1”時,“y=3”;
故選:D.
點評:本題主要考察選擇結構,程序框圖和算法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi),復數(shù)z1=-8+5
3
i,z2=-3,z3=3所對應的點為A、B、C,以A、B、C為頂點的三角形為△ABC
(Ⅰ)求∠B
(Ⅱ)求以B、C為焦點且過點A的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

自點M(2,4)作圓(x-1)2+(y+3)2=1的切線l,求切線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x+a
x2+1
是奇函數(shù),則常數(shù)a的值是( 。
A、0B、1C、-1D、任意實數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓方程為
y2
a2
+
x2
b2
=1(a>b>0),F(xiàn)1、F2分別為其上、下兩個焦點,F(xiàn)1(0,1),F(xiàn)2(0,-1),過F2斜率為1的直線與橢圓交于A、B兩點,且|AB|=
24
7

(1)求橢圓的方程;
(2)C、D為橢圓的上、下頂點,是否存在直線y=m,使得該直線上的任意點P(x0,m)滿足PC、PD與橢圓的另一交點M、N,MN的連線恒過F2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,則輸出的n的值是(  )
A、21B、22C、23D、24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F是
x2
25
+
y2
9
=1的右焦點,P是其上一點,定點B(2,1),則|PB|+
5
4
|PF|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(a∈R),求函數(shù)在區(qū)間[a+1,a+2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|-2<x<3},N={x|x≥-1},則M∩N等于( 。
A、(-2,-1]
B、(-2,1]
C、[-1,3)
D、[1,3)

查看答案和解析>>

同步練習冊答案